Skip to main content
Log in

Mathematical foundation of Liutex theory

  • Feature Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Liutex is a mathematical definition of vortex, which is called the third generation of vortex definition and identification. This paper introduces the mathematical foundation of the Liutex theoretical system including differences in definition and operations between tensor/vector and matrix. The right version of velocity gradient tensor matrix is given to correct the old version which has been widely distributed by many mathematics and fluid dynamics textbooks. A unique velocity gradient principal matrix is provided. The mathematical foundation for Liutex definition is given. The coordinate rotation (Q - and P - rotation) for principal coordinate system and principal matrix is derived, which is the key issue of the new fluid kinematics. The divergence of velocity gradient tensor is given in different forms which may be beneficial in developing new governing equations for fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Küchemann D. Report on the IUTAM symposium on concentrated vortex motions in fluids [J]. Journal of Fluid Mechanics, 1965, 21: 1–20.

    Article  MATH  Google Scholar 

  2. Helmholtz H. Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen [J[. Journal für die reine und angewandte Mathematik, 1858, 55: 22–55.

    MathSciNet  MATH  Google Scholar 

  3. Lamb H. Hydrodynamics [M]. Cambirdge, UK: Cambridge University Press, 1932.

    MATH  Google Scholar 

  4. Nitsche M. Vortex dynamics (Encyclopedia of mathematical physics) [M]. Cambirdge, USA: Academic Press, 2006, 390–399.

    Google Scholar 

  5. Françoise J. P., Naber G. L., Tsou S. T. Encyclopedia of mathematical physics [M]. Amsterdam, The Netherlands: Elsevier, 2006.

    MATH  Google Scholar 

  6. Wu J. Z., Ma H. Y., Zhou M. D. Vorticity and vortex dynamics [M]. Berlin, Germany: Springer, 2006.

    Book  Google Scholar 

  7. Wu J. Z. Vortex definition and “vortex criteria” [J]. Science China Physics, Mechanics and Astronomy, 2018, 61(2): 82–86.

    Article  Google Scholar 

  8. Robinson S., Kline S. J., Spalart P. A review of quasicoherent structures in a numerically simulated turbulent boundary layer, in the quasi-coherent structures in the turbulent boundary layer, Part 2. Verification and new inform. from a numerically simulated flat-plate layer at memorial intern. Seminar on near-wall turbulence [R]. NASA-TM-102191, 1989.

    Google Scholar 

  9. Wang Y., Yang Y., Yang G., Liu C. DNS study on vortex and vorticity in late boundary layer transition [J]. Communications in Computational Physics, 2017, 22(2): 441–459.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hunt J., Wray A., Moin P. Eddies, streams, and convergence zones in turbulent flows [R]. Proceedings of the Summer Program. Center for Turbulence Research Report CTR-S88, 1988, 193–208.

    Google Scholar 

  11. Chong M. S., Perry A. E., Cantwell B. J. A general classification of three-dimensional flow fields [J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

  12. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou J., Adrian R. J., Balachandar S. et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  15. Liu C., Yan Y., Lu P. Physics of turbulence generation and sustenance in a boundary layer [J]. Computers and Fluids, 2014, 102: 353–384.

    Article  Google Scholar 

  16. Liu C., Gao Y., Tian S. et al. Rortex—A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 303): 035103.

    Article  Google Scholar 

  17. Gao Y., Liu C. Rortex and comparison with eigenvaluebased vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  18. Kolár V., Šístek J. Consequences of the close relation between Rortex and swirling strength [J]. Physics of Fluids, 2020, 32(9): 091702.

    Article  Google Scholar 

  19. Kolár V. Vortex identification: New requirements and limitations [J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 638–652.

    Article  Google Scholar 

  20. Zhen L., Zhang X. W., He F. Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor [J]. Acta Physica Sinica, 2014, 63(5): 054704.

    Article  Google Scholar 

  21. Liu J., Liu C. Modified normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(6): 061704.

    Article  Google Scholar 

  22. Gao Y., Liu J., Yu Y., Liu C. A Liutex based definition and identification of vortex core center lines [J]. Journal of Hydrodynamics, 2019, 31(3): 445–454.

    Article  Google Scholar 

  23. Liu C., Xu H., Cai X. et al. Liutex and its applications in turbulence research [M]. Cambirdge, USA: Academic Press, 2020.

    Google Scholar 

  24. Liu C., Gao Y. Liutex-based and other mathematical, computational and experimental methods for turbulence structure [M]. Sharjah, United Arab Emirates: Bentham Science Publishers, 2020.

    Book  Google Scholar 

  25. Guo Y. A., Dong X. R., Cai X. S. et al. Experimental study on dynamic mechanism of vortex evolution in a turbulent boundary layer of low Reynolds number [J]. Journal of Hydrodynamics, 2020, 32(5): 807–819.

    Article  Google Scholar 

  26. Yu Y., Shrestha P., Alvarez O., Nottage C., Liu C. Investigation of correlation between vorticity, Q, λci, λ2, Δ and Liutex [J]. Computers and Fluids, 2021, 225: 104977.

    Article  MathSciNet  MATH  Google Scholar 

  27. Shrestha P., Nottage C., Yu Y., Alvarez O., Liu C. Stretching and shearing contamination analysis for Liutex and other vortex identification methods [J]. Advances in Aerodynamics, 2021, 3: 8.

    Article  Google Scholar 

  28. Yu Y., Shrestha P., Alvarez O., Nottage C., Liu C. Correlation analysis among vorticity, Q method and Liutex [J]. Journal of Hydrodynamics, 2020, 32(6): 1207–1211.

    Article  Google Scholar 

  29. Cuissa J. C., Steiner O. Innovative and automated method for vortex identification-I. Description of the SWIRL algorithm [J]. Astronomy and Astrophysics, 2022, 668: A118.

    Article  Google Scholar 

  30. Tziotziou K., Scullion E., Shelyag S. et al. Vortex motions in the solar atmosphere: Definitions, theory, observations, and modelling [J]. Space Science Reviews, 2023, 219: 1

    Article  Google Scholar 

  31. Zhao W. W., Wang Y. Q., Chen S. T. et al. Parametric study of Liutex-based force field models [J]. Journal of Hydrodynamics, 2021, 33(1): 86–92.

    Article  Google Scholar 

  32. Zhao W. W., Ma C. H., Wan D. C. et al. Liutex force field model applied to three-dimensional flows around a circular cylinder at Re=3 900 [J]. Journal of Hydrodynamics, 2021, 33(3): 479–487.

    Article  Google Scholar 

  33. Zhao M. S., Zhao W. W., Wan D. C. et al. Applications of Liutex-based force field models for cavitation simulation [J]. Journal of Hydrodynamics, 2021, 33(3): 488–493.

    Article  Google Scholar 

  34. Yu H. D., Wang Y. Q. Liutex-based vortex dynamics: A preliminary study [J]. Journal of Hydrodynamics, 2020, 32(6): 1217–1220.

    Article  Google Scholar 

  35. Cao L. S., Chen S. T., Wan D. C. et al. Vortex tuning of a submarine by Liutex force field model [J]. Journal of Hydrodynamics, 2021, 33(3): 503–509.

    Article  Google Scholar 

  36. Wang Y. Q.. Gao Y. S., Xu H. et al. Liutex theoretical system and six core elements of vortex identification [M]. Journal of Hydrodynamics, 2020, 32(2): 197–211.

    Article  Google Scholar 

  37. Yu Y., Shrestha P., Nottage C., Liu C. Principal coordinates and principal velocity gradient tensor decomposition [J]. Journal of Hydrodynamics, 2020, 32(3): 441–453.

    Article  Google Scholar 

  38. Moukalled F., Mangani L., Darwish M. The finite volume method in computational fluid dynamics: An advanced introduction with OpenFOAM® and Matlab [M]. Berlin, Germany: Springer, 2016.

    Book  MATH  Google Scholar 

  39. Schlichting H., Gersten K. Boundary-layer theory [M]. Berlin, Germany: Springer, 2000.

    Book  MATH  Google Scholar 

  40. Irgens F. Tensor analysis [M]. Berlin, Germany: Springer, 2019.

    Book  MATH  Google Scholar 

  41. Liu C. New ideas on governing equations of fluid dynamics [J]. Journal of Hydrodynamics, 2021, 33(5): 861–866.

    Article  Google Scholar 

  42. Liu C., Liu Z. New governing equations for fluid dynamics [J]. AIP Advances, 2021, 11: 115025.

    Article  Google Scholar 

Download references

Acknowledgment

The current development of Liutex theory and application is under support by US National Science Foundation (Grant No. 2300052). The authors would like to thank Prof. Lian-di Zhou for the helpful discussions. The authors also would like to thank former UTA team members including Yi-qian Wang, Yi-sheng Gao, Xiang-rui Dong, Jian-ming Liu, Wen-qian Xu and collaborators including Xiao-shu Cai and Hongyi Xu. The authors are thankful to Texas Advanced Computing Center (TACC) for providing the computation hours. The authors would like to thank the University of Texas at Arlington for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoqun Liu.

Ethics declarations

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Biography: Chaoqun Liu, Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yu, Y. Mathematical foundation of Liutex theory. J Hydrodyn 34, 981–993 (2022). https://doi.org/10.1007/s42241-023-0091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-023-0091-2

Key words

Navigation