Skip to main content
Log in

A modified-Liutex-based vortex-core-line extractor and its application

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Vortices, which appear as swirling behaviour of a flow field, are an important phenomenon in fluid dynamics, and the extraction of vortex cores is necessary for the research of vortex evolution in many areas of fluid mechanics. The Liutex method is a milestone in vortex identification and provides a reasonable mathematical definition for a vortex core. Based on this definition, a novel integration-based method is presented, which can reduce the numerical error in the integration process through location optimization. Two typical test cases, the wake vortices of an A320 in the near-ground stage and a helicopter rotor, are examined to show that the proposed method can extract continuous vortex core lines with accuracy and efficiency for vortex parameter study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kim J., Moin P., Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number [J]. Journal of Fluid Mechanics, 1987, 177: 133–166.

    Article  MATH  Google Scholar 

  2. Miura H., Kida S. Identification of tubular vortices in turbulence [J]. Journal of the Physical Society of Japan, 1997, 66(5): 1331–1334.

    Article  MATH  Google Scholar 

  3. Hunt J., Wray A., Moin P. Eddies, streams, and convergence zones in turbulent flows [R]. Proceedings of the Summer Program. Center for Turbulence Research Report CTR-S88, 1988, 193–208.

    Google Scholar 

  4. Robinson S. K. A review of vortex structures and associated coherent motions in turbulent boundary layers [C]. IUTAM Symposium, Zurich, Switzerland, 1990.

    Book  Google Scholar 

  5. Sadlo F., Peikert R., Parkinson E. Vorticity based flow analysis and visualization for pelton turbine design optimization [C]. IEEE Visualization 2004, Austin, USA, 2004.

    Google Scholar 

  6. Moffatt H. K. The degree of knottedness of tangled vortex lines [J]. Journal of Fluid Mechanics, 1969, 35(1): 117–129.

    Article  MATH  Google Scholar 

  7. Hussain A. F. Coherent structures and turbulence [J]. Journal of Fluid Mechanics, 1986, 173: 303–356.

    Article  Google Scholar 

  8. Hunt J. Vorticity and vortex dynamics in complex turbulent flows [J]. Transactions of the Canadian Society for Mechanical Engineering, 1987, 11(1): 21–35.

    Article  Google Scholar 

  9. Jiang M., Machiraju R. Detection and visualization of vortices (Hansen C. D., Johnson C. R. Visualization handbook) [M]. Rotterdam, The Netherlands: Elsevier, 2011.

    Google Scholar 

  10. Chong M. S., Perry A. E., Cantwell B. J. A general classification of three-dimensional flow fields [J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

  11. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018. 30(3): 035103.

    Article  Google Scholar 

  12. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  13. Moin P., Kim J. The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations [J]. Journal of Fluid Mechanics, 1985, 155: 441–464.

    Google Scholar 

  14. Globus A., Levit C., Lasinski T. A tool for visualizing the topology of three-dimensional vector fields [C]. Proceedigs Visualization'91, San Diego, USA, 1991.

    Google Scholar 

  15. Sujudi D., Haimes R. Identification of swirling flow in 3-D vector fields [C]. 12th Computational Fluid Dynamics Conference, San Diego, USA, 1995.

    Google Scholar 

  16. Sahner J., Weinkauf T., Hege H. C. Galilean invariant extraction and iconic representation of vortex core lines [C]. EuroVis05: Joint Eurographics-IEEE VGTC Symposium on Visualization, Goslar, Germany, 2005.

    Google Scholar 

  17. Strawn R. C., Kenwright D. N., Ahmad J. Computer visualization of vortex wake systems [J]. AIAA Journal, 37(4): 511–512.

  18. Günther T., Theisel H. The state of the art in vortex extraction [J]. Computer Graphics Forum, 2018, 37(6): 149–173.

    Article  Google Scholar 

  19. Gao Y. S., Liu J. M., Yu Y. et al., A Liutex based definition and identification of vortex core center lines [J]. Journal of Hydrodynamics, 2019, 31(3): 445–454.

    Article  Google Scholar 

  20. Xu H., Cai X. S., Liu C. Liutex (vortex) core definition and automatic identification for turbulence vortex structures [J]. Journal of Hydrodynamics, 2019, 31(5): 857–863.

    Article  Google Scholar 

  21. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  22. Liu C., Yu Y., Gao Y. S. Liutex based new fluid kinematics [J]. Journal of Hydrodynamics, 2022, 34(3): 355–371.

    Article  Google Scholar 

  23. Liu C., Yu Y. Mathematical foundation of Liutex theory [J]. Journal of Hydrodynamics, 2022, 34(6): 981–993.

    Article  MathSciNet  Google Scholar 

  24. Li J. H., Xia Y. X., Qiu X. et al. An extended similarity in channel turbulence [J]. Journal of Hydrodynamics, 2021, 33(4): 782–786.

    Article  Google Scholar 

  25. McLoughlin T., Laramee R. S., Peikert R. et al. Over two decades of integration—based, geometric flow visualization [J]. Computer Graphics Forum, 2010, 29(6): 1807–1829.

    Article  Google Scholar 

  26. Holzäpfel F., Hofbauer T., Darracq D. et al. Analysis of wake vortex decay mechanisms in the atmosphere [J]. Aerospace Science and Technology, 2003, 7(4): 263–275.

    Article  MATH  Google Scholar 

  27. Rumsey C. L., Long M., Stuever R. A. et al. Summary of the first AIAA CFD high-lift prediction workshop [J]. Journal of Aircraft, 2011, 48(6): 2068–2079.

    Article  Google Scholar 

  28. Wolfe P. Convergence conditions for ascent methods [J]. SIAM Review, 1969, 11(2): 226–235.

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu Z., Li D., An B. et al. Enhancement of wake vortex decay by air blowing from the ground [J]. Aerospace Science and Technology, 2021, 118: 107029.

    Article  Google Scholar 

  30. Banks D. C., Singer B. A. A predictor-corrector technique for visualizing unsteady flow [J]. IEEE Transactions on Visualization and Computer Graphics, 1995, 1(2): 151–163.

    Article  Google Scholar 

  31. Caradonna F. X., Tung C. Experimental and analytical studies of a model helicopter rotor in hover [C]. 6th European Rotorcraft and Powered Lift Aircraft Forum, Birstol, UK, 1980.

    Google Scholar 

  32. Zhang Z., Li D., Zhou J. et al. Numerical simulation of wake vortex for the flight near the ground with different boundary conditions [J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 484–500.

    Article  Google Scholar 

  33. Bresenham J. E. Algorithm for computer control of a digital plotter [J]. IBM Systems Journal, 1965, 4(1): 25–30.

    Article  Google Scholar 

Download references

Acknowledgement

(This research received other funding agency in the public, commercial, or not-for-profit sectors.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li.

Ethics declarations

Conflict of interest: The authors declare that they have no conflict of interest.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. U173320010, 11802328).

Biography: Jin-yan Cai (1998-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Jy., Li, D., Xu, Zm. et al. A modified-Liutex-based vortex-core-line extractor and its application. J Hydrodyn 35, 811–824 (2023). https://doi.org/10.1007/s42241-023-0060-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-023-0060-9

Key words

Navigation