Skip to main content
Log in

Evaluation of the hemolysis and fluid dynamics of a ventricular assist device under the pulsatile flow condition

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

When the rotary blood pumps are used as ventricular assist devices, the pump flow rate will have a pulsatile component even at a constant impeller rotational speed due to the remaining beating of the natural heart. However, previous studies on the in vitro hemolysis evaluation of a rotary blood pump have always been conducted under steady states and this pulsation was not taken into account. In this study, the hemolysis in a centrifugal blood pump is evaluated under the pulsatile flow condition in vitro. The required time-varying flow rate is obtained by conducting a system simulation of the pump-assisted cardiovascular system, and realized by controlling a pulsation unit in the experiments. The results of our tests indicate a significant increase in hemolysis under the pulsatile flow condition compared with the non-pulsatile condition. To reveal the flow characteristics responsible for the higher hemolysis, transient computational fluid dynamic simulations are then performed. This study suggests that traditional hemolysis evaluation under the steady states may not fully represent the hemolytic performance in the clinical use. For the ventricular assist pumps at the design stage, eliminating the concern about the extra hemolysis under the pulsatile condition will be helpful for the subsequent in vivo experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffrey A., LaRose, Tamez D. et al. Design concepts and principle of operation of the HeartWare ventricular assist system [J]. ASAIO Journal, 2010, 56(4): 285–289.

    Article  Google Scholar 

  2. Daners M. S., Kaufmann F., Amacher R. et al. Left ventricular assist devices: challenges toward sustaining longterm patient care [J]. Annals of Biomedical Engineering, 2017, 24(8): 1836–1851.

    Article  Google Scholar 

  3. Yamazaki K., Saito S., Kihara S. et al. Completely pulsatile high flow circulatory support with a constant-speed centrifugal blood pump: Mechanisms and early clinical observations [J]. General Thoracic and Cardiovascular Surgery, 2007, 55(4): 158–162.

    Article  Google Scholar 

  4. Noor M. R., Ho C. H., Parker K. H. et al. Investigation of the characteristics of HeartWare HVAD and Thoratec HeartMate II under steady and pulsatile flow conditions [J]. Artificial Organs, 2015, 40(6): 549–560.

    Article  Google Scholar 

  5. Taskin M. E., Fraser K. H., Zhang T. et al. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support [J]. Artificial Organs, 2010, 34(12): 1099–1113.

    Article  Google Scholar 

  6. Li T. Y., Ye L., Hong F. W. et al. The simulation of multiphase flow field in implantable blood pump and analysis of hemolytic capability [J]. Journal of Hydrodynamics, 2013, 25(4): 606–615.

    Article  Google Scholar 

  7. Han Q., Zou J., Ruan X. et al. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump [J]. Artificial Organs, 2012, 36(8): 739–746.

    Article  Google Scholar 

  8. Vandenberghe S., Segers P., Meyns B. et al. Effect of rotary blood pump failure on left ventricular energetics assessed by mathematical modeling [J]. Artificial Organs, 2002, 26(12): 1032–1039.

    Article  Google Scholar 

  9. Shi Y., Lawford P. V., Hose D. R. Numerical modeling of hemodynamics with pulsatile impeller pump support [J]. Annals of Biomedical Engineering, 2010, 38(8): 2621–2634.

    Article  Google Scholar 

  10. Shi Y., Korakianitis T. Numerical simulation of cardiovascular dynamics with left heart failure and in-series pulsatile ventricular assist device [J]. Artificial Organs, 2006, 30(12): 929–948.

    Article  Google Scholar 

  11. Vermette P., Thibault J., Laroche G. A continuous and pulsatile flow circulation system for evaluation of cardiovascular devices [J]. Artificial Organs, 1998, 22(9): 746–752.

    Article  Google Scholar 

  12. Han Q. Research on structure design and hemocompatibility of hydrodynamic bearing in artificial heart [D]. Doctoral Thesis, Hangzhou, China: Zhejiang University, 2012(in Chinese).

    Google Scholar 

  13. Kosaka R., Yasui K., Nishida M. et al. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis [J]. Artificial Organs, 2014, 38(9): 818–822.

    Article  Google Scholar 

  14. Kataoka H., Kimura Y., Fujita H. et al. Influence of radial clearance and rotor motion to hemolysis in a journal bearing of a centrifugal blood pump [J]. Artificial Organs, 2006, 30(11): 841–854.

    Article  Google Scholar 

  15. Luo X. W., Ji B., Zhuang B. T. et al. A miniature pump with a fluid dynamic bearing [J]. Science China Technological Sciences, 2012, 55(3): 795–801.

    Article  Google Scholar 

  16. Garon A., Farinas M. I. Fast three-dimensional numerical hemolysis approximation [J]. Artificial Organs, 2004, 28(11): 1016–1025.

    Article  Google Scholar 

  17. Giersiepen M., Wurzinger L., Opitz R. et al. Estimation of shear stress-related blood damage in heart valve prostheses?in vitro comparison of 25 aortic valves [J]. The International Journal of Artificial Organs, 1990, 13(5): 300..

    Article  Google Scholar 

  18. Ozturk C., Aka I. B., Lazoglu I. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump [J]. The International Journal of Artificial Organs, 2018, 41(11): 730–737.

    Article  Google Scholar 

  19. Taskin M. E., Fraser K. H., Zhang T. et al. Evaluation of Eulerian and Lagrangian models for hemolysis estimation [J]. ASAIO Journal, 2012, 58(4): 363–372.

    Article  Google Scholar 

  20. Song X. W., Throckmorton A. L., Wood H. G. et al. Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics [J]. Journal of Fluids Engineering, 2004, 126(3): 410–418.

    Article  Google Scholar 

  21. Chen H. X., Ma Z., Zhang W. et al. On the hydrodynamics of hydraulic machinery and flow control [J]. Journal of Hydrodynamics, 2017, 29(5): 782–789.

    Article  Google Scholar 

  22. Song X. W., Untaroiu A., Wood H. G. et al. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device [J]. ASAIO Journal, 2004, 50(3): 215–224.

    Article  Google Scholar 

  23. Throckmorton A. L., Tahir S. A., Lopes S. P. et al. Steady and transient flow analysis of a magnetically levitated pediatric VAD: Time varying boundary conditions [J]. The International Journal of Artificial Organs, 2013, 36(10): 693–699.

    Article  Google Scholar 

  24. Tsang A. C. O., Yiu B. Y. S., Tang A. Y. S. et al. The effect of downstream resistance on flow diverter treatment of a cerebral aneurysm at a bifurcation: A joint computational- experimental study [J]. Journal of Hydrodynamics, 2018, 30(5): 803–814.

    Article  Google Scholar 

  25. Tayama E., Nakazawa T., Takami Y. et al. The hemolysis test of the Gyro C1E3 pump in pulsatile mode [J]. Artificial Organs, 1997, 21(7): 675–679.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-dong Ruan  (阮晓东).

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 51505455), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51221004).

Biography: Huan Li (1987-), Female, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gou, Z., Huang, F. et al. Evaluation of the hemolysis and fluid dynamics of a ventricular assist device under the pulsatile flow condition. J Hydrodyn 31, 965–975 (2019). https://doi.org/10.1007/s42241-018-0154-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-018-0154-y

Key words

Navigation