Skip to main content

Advertisement

Log in

Numerical Modeling of Hemodynamics with Pulsatile Impeller Pump Support

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There is significant interest in the development and application of variable speed impeller-pump type ventricular assist devices designed to generate pulsatile blood flow. However, no study has so far been carried out to investigate the systemic cardiovascular response to various aspects of pump motion. In this article, a numerical model is constructed for the simulation of the cardiovascular response in the heart failure condition under representative cases of pulsatile impeller pump support. The native cardiovascular model is based on a previously validated model, and the impeller pump is modeled by directly fitting the pressure–flow curves that describe the pump characteristics. The model developed is applied to study circulatory dynamics under different degrees of phase shift and pulsation ratio in the pump motion profile. The characteristic variables are discussed as criteria for the evaluation of system response for comparison of the pulsatile flows. Simulation results show that a constant pump speed is the most efficient work mode for the rotary pump, and with the application of either a phase shift of 75% and a pulsation ratio of 0.5, or a phase shift of 42% and a pulsation ratio of 0.55, it is possible to generate arterial pulse pressure with the maximal magnitude of about 28 mmHg. However, this is achieved at the cost of reduced cardiac output and pump efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Abbreviations

C :

Compliance

CO:

Cardiac output

CQ:

Flow coefficient

E, e:

Elastance

EF:

Ejection fraction

K :

Coefficient

L :

Inertance

P :

Pressure

Q :

Flow rate

R :

Resistance

t :

Time

T :

Heart period

ϕ:

Phase difference

Δ:

Difference, variation

Ω, ω:

Rotating speed of the pump

0:

Initial value; offset value

ao:

Aortic valve

ed:

End diastolic

en:

Energy equivalent value

es:

End systolic

la:

Left atrium

lv:

Left ventricle

lvf:

Left ventricular failure

max:

Maximum value

mi:

Mitral valve

min:

Minimum value

p:

Pulse amplitude

par:

Pulmonary arterioles

pas:

Pulmonary artery sinus

pat:

Pulmonary artery

pcp:

Pulmonary capillary

po:

Pulmonary valve

pvn:

Pulmonary vein

ra:

Right atrium

rv:

Right ventricle

sar:

Systemic arterioles

sas:

Systemic aortic sinus

sat:

Systemic artery

scp:

Systemic capillary

svn:

Systemic vein

ti:

Tricuspid valve

vad:

Ventricular assist device

vpi:

Inflow conduit for the VAD

vpo:

Outflow conduit for the VAD

vvi:

Inlet port of the VAD

vvo:

Outlet port of the VAD

References

  1. Ayre, P. J., S. S. Vidakovis, G. D. Tansley, P. A. Watterson, and N. H. Lovell. Sensorless flow and head estimation in the ventrassist rotary blood pump. Artif. Organs 24(8):585–588, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Bourque, K., D. B. Gernes, H. M. Loree, J. S. Richardson, V. L. Poirier, N. Barletta, A. Fleischli, G. Foiera, T. M. Gempp, R. Schoeb, K. N. Litwak, T. Akimoto, M. J. Watach, and P. Litwak. HeartMate III: pump design for a centrifugal LVAD with a magnetically levitated rotor. ASAIO J. 47:401–405, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Casas, F., N. Ahmed, and A. Reeves. Minimal sensor count approach to fuzzy logic rotary blood pump flow control. ASAIO J. 53:140–146, 2007.

    Article  PubMed  Google Scholar 

  4. Choi, S., J. F. Antaki, J. R. Boston, and D. Thomas. A sensorless approach to control of a turbodynamic left ventricular assist system. IEEE Trans. Control Syst. Technol. 9(3):473–482, 2001.

    Article  Google Scholar 

  5. Chou, N., S. Wang, Y. Lin, J. Shyu, K. Hsieh, G. Jan, and S. Chu. Development of a totally implantable pulsatile centrifugal pump as a ventricular assist device. Artif. Organs 25(8):603–606, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Giridharan, G., and M. Skliar. Control strategy for maintaining physiological perfusion with rotary blood pumps. Artif. Organs 27(7):639–648, 2003.

    Article  PubMed  Google Scholar 

  7. Giridharan, G., M. Skliar, D. B. Olsen, and G. M. Pantalos. Modeling and control of a brushless dc axial flow ventricular assist device. ASAIO J. 48:272–289, 2002.

    Article  PubMed  Google Scholar 

  8. Göbel, C., A. Arvand, R. Eilers, O. Marseille, C. Bals, B. Meyns, W. Flameng, G. Rau, and H. Reul. Development of the MEDOS/HIA DeltaStream extracorporeal rotary blood pumps. Artif. Organs 25(5):358–365, 2001.

    Article  PubMed  Google Scholar 

  9. Guyton, A. C. Textbook of Medical Physiology. W.B. Saunders Company, 1986.

  10. Isoyama, T., Y. Abe, T. Chinzei, S. Mochizuki, T. Karita, I. Saito, T. Ono, A. Kouno, K. Baba, and K. Imachi. Using one rotary blood pump to produce separate pulsatile circulations in the upper and lower halves of the body. Artif. Organs 24(8):680–682, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Kitamura, T., Y. Matsushima, T. Tokuyama, S. Kono, K. Nishimura, M. Komeda, M. Yanai, T. Kijima, and S. Nojiri. Physical model-based indirect measurements of blood pressure and flow using a centrifugal pump. Artif. Organs 24(8):589–593, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Korakianitis, T., and Y. Shi. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomech. 39(11):1964–1982, 2006.

    Article  PubMed  Google Scholar 

  13. Li, X., J. Bai, and P. He. Simulation study of the hemopump as a cardiac assist device. Med. Biol. Eng. Comput. 40:344–353, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. Malagutti, N., D. M. Karantonis, S. L. Cloherty, P. J. Ayre, D. G. Mason, R. F. Salamonsen, and N. H. Lovell. Noninvasive average flow estimation for an implantable rotary blood pump: a new algorithm incorporating the role of blood viscosity. Artif. Organs 31(1):45–52, 2007.

    Article  PubMed  Google Scholar 

  15. Mitsui, N., S. Fukunaga, T. Sueda, Y. Matsuura, P. Havlik, J. Trinkl, J. Demunck, T. Mesana, and J. Montiès. Study of left ventricular bypass using wankel type semipulsatile blood pump. Artif. Organs 22(5):419–425, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Ohuchi, K., D. Kikugawa, K. Takahashi, M. Uemura, M. Nakamura, T. Murakami, T. Sakamoto, and S. Takatani. Control strategy for rotary blood pumps. Artif. Organs 28(8):717–727, 2004.

    Article  Google Scholar 

  17. Pieske, B. Reverse remodeling in heart failure–fact or fiction? Eur. Heart J. Suppl. 6(Supplement D):D66–D78, 2004.

    Article  Google Scholar 

  18. Qian, K. Pulsatile impeller heart: a viable alternative to a problematic diaphragm heart. Med. Eng. Phys. 18(1):57–66, 1996.

    Article  CAS  PubMed  Google Scholar 

  19. Qian, K. X., P. Zeng, W. M. Ru, H. Y. Yuan, Z. G. Feng, and I. Li. How to produce a pulsatile flow with low haemolysis? J. Med. Eng. Technol. 24(5):227–229, 2000.

    Article  CAS  PubMed  Google Scholar 

  20. Sezai, A., M. Shiono, Y. Orime, K. Nakata, M. Hata, M. Iida, S. Kashiwazaki, J. Kinoshita, M. Nemoto, T. Koujima, M. Furuichi, K. Eda, H. Hirose, T. Yoshino, A. Saitoh, Y. Tanguchi, and Y. Sezai. Major organ function under mechanical support: Comparative studies of pulsatile and nonpulsatile circulation. Artif. Organs 23(3):280–285, 1999.

    Article  CAS  PubMed  Google Scholar 

  21. Shepard, R., D. C. Simpson, and J. Sharp. Energy equivalent pressure. Arch. Surg. 93:730–740, 1966.

    CAS  PubMed  Google Scholar 

  22. Shi, Y., and T. Korakianitis. Numerical simulation of cardiovascular dynamics with left heart failure and in-series pulsatile ventricular assist device. Artif. Organs 30(2):929–948, 2006.

    Article  PubMed  Google Scholar 

  23. Stepanoff, A. J. Centrifugal and Axial Flow Pumps: Theory, Design and Application (2nd ed.). New York: John Wiley & Sons, Inc., 1962.

    Google Scholar 

  24. Takatani, S. Can rotary blood pumps replace pulsatile devices? Artif. Organs 25(9):671–674, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Ündar, A. Fundamentals of pulsatile versus nonpulsatile flow during chronic support. ASAIO J. 49(1):139–140, 2003.

    Article  PubMed  Google Scholar 

  26. Ündar, A. Myths and truths of pulsatile and nonpulsatile perfusion during acute and chronic cardiac support. Artif. Organs 28(5):439–443, 2004.

    Article  PubMed  Google Scholar 

  27. Ündar, A., O. H. Frazier, and C. D. Fraser. Definiong pulsatile perfusion: quantification in terms of energy equivalent pressure. Artif. Organs 23(8):712–716, 1999.

    Article  PubMed  Google Scholar 

  28. Ündar, A., A. J. Lodge, C. W. Daggett, T. M. Runge, R. M. Ungerleider, and J. H. Calhoon. The type of aortic cannula and membrane oxygenator affect the pulsatile waveform morphology produced by a neonate-infant cardiopulmonary bypass system in vivo. Artif. Organs 22(8):681–686, 1998.

    Article  PubMed  Google Scholar 

  29. Vandenberghe, S., P. Segers, J. F. Antaki, B. Meyns, and P. Verdonck. Haemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. ASAIO J. 51:711–718, 2005.

    Article  PubMed  Google Scholar 

  30. Vandenberghe, S., P. Segers, B. Meyns, and P. R. Verdonck. Effect of rotary blood pump failure on left ventricular energetics assessed by mathematical modeling. Artif. Organs 26(12):1032–1039, 2002.

    Article  PubMed  Google Scholar 

  31. Vandenberghe, S., P. Segers, B. Meyns, and P. Verdonck. Unloading effect of a rotary blood pump assessed by mathematical modeling. Artif. Organs 27(12):1094–1101, 2003.

    Article  PubMed  Google Scholar 

  32. Waters, T., P. Allaire, G. Tao, M. Adams, G. Bearson, N. Wei, E. Hilton, M. Baloh, D. Olsen, and P. Khanwilkar. Motor feedback physiological control for a continuous flow ventricular assist device. Artif. Organs 23(6):480–486, 1999.

    Article  CAS  PubMed  Google Scholar 

  33. Yamazaki, K., S. Saito, S. Kihara, O. Tagusari, and H. Kurosawa. Completely pulsatile high flow circulatory support with a constant speed centrifugal blood pump: mechanisms and early clinical observations. Gen. Thorac. Cardiovasc. Surg. 55:158–162, 2007.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rodney Hose.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Lawford, P.V. & Hose, D.R. Numerical Modeling of Hemodynamics with Pulsatile Impeller Pump Support. Ann Biomed Eng 38, 2621–2634 (2010). https://doi.org/10.1007/s10439-010-0001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0001-y

Keywords

Navigation