Skip to main content
Log in

Modulated Degradation Rates of Bone Mineral-Like Calcium Phosphate Glass to Support the Proliferation and Osteogenic Differentiation of Bone Marrow-Derived Stem Cells

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

With an elemental composition similar to bone mineral, and the ability to release phosphorus and calcium that benefit bone regeneration, Calcium Phosphate Glass (CPG) serves as a promising component of bone tissue engineering scaffolds. However, the degradation of CPG composites typically results in increased acidity, and its impact on bone-forming activity is less studied. In this work, we prepared 3D-printed composite scaffolds comprising CPG, Poly-ε-caprolactone (PCL), and various Magnesium Oxide (MgO) contents. Increasing the MgO content effectively suppressed the degradation of CPG, maintaining a physiological pH of the degradation media. While the degradation of CPG/PCL scaffolds resulted in upregulated apoptosis of Rat Bone Marrow-derived Stem Cells (rBMSC), scaffolds containing MgO were free from these negative impacts, and an optimal MgO content of 1 wt% led to the most pronounced osteogenic differentiation of rBMSCs. This work demonstrated that the rapid degradation of CPG impaired the renewability of stem cells through the increased acidity of the surrounding media, and MgO effectively modulated the degradation rate of CPG, thus preventing the negative effects of rapid degradation and supporting the proliferation and osteogenic differentiation of the stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding author (X.G.) upon reasonable request.

References

  1. Schemitsch, E. H. (2017). Size matters: Defining critical in bone defect size! Journal of Orthopaedic Trauma, 31, S20–S22. https://doi.org/10.1097/BOT.0000000000000978

    Article  Google Scholar 

  2. Ashammakhi, N., GhavamiNejad, A., Tutar, R., Fricker, A., Roy, I., Chatzistavrou, X., Hoque Apu, E., Nguyen, K. L., Ahsan, T., Pountos, I., & Caterson, E. J. (2022). Highlights on advancing frontiers in tissue engineering. Tissue Engineering Part B: Reviews, 28(3), 633–664. https://doi.org/10.1089/ten.teb.2021.0012

    Article  Google Scholar 

  3. Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues—State of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107–124. https://doi.org/10.1163/156856201744489

    Article  Google Scholar 

  4. Fratzl, P., Gupta, H. S., Paschalis, E. P., & Roschger, P. (2004). Structure and mechanical quality of the collagen–mineral nano-composite in bone. Journal of Materials Chemistry, 14(14), 2115–2123. https://doi.org/10.1039/B402005G

    Article  Google Scholar 

  5. Unal, M., Creecy, A., & Nyman, J. S. (2018). The role of matrix composition in the mechanical behavior of bone. Current Osteoporosis Reports, 16(3), 205–215. https://doi.org/10.1007/s11914-018-0433-0

    Article  Google Scholar 

  6. Bose, S., Fielding, G., Tarafder, S., & Bandyopadhyay, A. (2013). Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnology, 31(10), 594–605. https://doi.org/10.1016/j.tibtech.2013.06.005

    Article  Google Scholar 

  7. Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346. https://doi.org/10.1016/s0142-9612(00)00101-0

    Article  Google Scholar 

  8. Jiang, Y., Yuan, Z., & Huang, J. (2019). Substituted hydroxyapatite: A recent development. Materials Technology, 35(11–12), 785–796. https://doi.org/10.1080/10667857.2019.1664096

    Article  Google Scholar 

  9. He, L., Yin, J., & Gao, X. (2023). Additive manufacturing of bioactive glass and its polymer composites as bone tissue engineering scaffolds: A review. Bioengineering (Basel), 10(6), 672. https://doi.org/10.3390/bioengineering10060672

    Article  Google Scholar 

  10. Abou Neel, E. A., Salih, V., & Knowles, J. C. (2017). 1.18 phosphate-based glasses. In P. Ducheyne (Ed.), Comprehensive Biomaterials II (pp. 392–405). Elsevier Oxford.

    Chapter  Google Scholar 

  11. Colquhoun, R., & Tanner, K. E. (2015). Mechanical behaviour of degradable phosphate glass fibres and composites—A review. Biomedical Materials, 11(1), 014105. https://doi.org/10.1088/1748-6041/11/1/014105

    Article  Google Scholar 

  12. Lapa, A., Cresswell, M., Jackson, P., & Boccaccini, A. R. (2019). Phosphate glass fibres with therapeutic ions release capability—A review. Advances in Applied Ceramics, 119(1), 1–14. https://doi.org/10.1080/17436753.2018.1564413

    Article  Google Scholar 

  13. Liu, Y. K., Lu, Q. Z., Pei, R., Ji, H. J., Zhou, G. S., Zhao, X. L., Tang, R. K., & Zhang, M. (2009). The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: Implication for bone tissue engineering. Biomedical Materials, 4(2), 025004. https://doi.org/10.1088/1748-6041/4/2/025004

    Article  Google Scholar 

  14. Rui, S., Kubota, T., Ohata, Y., Yamamoto, K., Fujiwara, M., Takeyari, S., & Ozono, K. (2022). Phosphate promotes osteogenic differentiation through non-canonical Wnt signaling pathway in human mesenchymal stem cells. Bone, 164, 116525. https://doi.org/10.1016/j.bone.2022.116525

    Article  Google Scholar 

  15. Stefanic, M., Peroglio, M., Stanciuc, A. M., Machado, G. C., Campbell, I., Kržmanc, M. M., Alini, M., & Zhang, X. (2018). The influence of strontium release rate from bioactive phosphate glasses on osteogenic differentiation of human mesenchymal stem cells. Journal of the European Ceramic Society, 38(3), 887–897. https://doi.org/10.1016/j.jeurceramsoc.2017.08.005

    Article  Google Scholar 

  16. Melo, P., Tarrant, E., Swift, T., Townshend, A., German, M., Ferreira, A. M., Gentile, P., & Dalgarno, K. (2019). Short phosphate glass fiber–PLLA composite to promote bone mineralization. Material Science & Engineering C: Materials for Biological Applications, 104, 109929. https://doi.org/10.1016/j.msec.2019.109929

    Article  Google Scholar 

  17. Gupta, D., Hossain, K. M. Z., Roe, M., Smith, E. F., Ahmed, I., Sottile, V., & Grant, D. M. (2021). Long-term culture of stem cells on phosphate-based glass microspheres: Synergistic role of chemical formulation and 3D architecture. ACS Applied Bio Materials, 4(8), 5987–6004. https://doi.org/10.1021/acsabm.1c00120

    Article  Google Scholar 

  18. Ahmed, I., Cronin, P. S., Abou Neel, E. A., Parsons, A. J., Knowles, J. C., & Rudd, C. D. (2009). Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. Journal of Biomedical Materials Research Part B Applied Biomaterials, 89(1), 18–27. https://doi.org/10.1002/jbm.b.31182

    Article  Google Scholar 

  19. Liu, X., Hasan, M. S., Grant, D. M., Harper, L. T., Parsons, A. J., Palmer, G., Rudd, C. D., & Ahmed, I. (2014). Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites. Journal of Biomaterials Applications, 29(5), 675–687. https://doi.org/10.1177/0885328214541302

    Article  Google Scholar 

  20. Brauer, D. S., Russel, C., Li, W., & Habelitz, S. (2006). Effect of degradation rates of resorbable phosphate invert glasses on in vitro osteoblast proliferation. Journal of Biomedical Materials Research Part A, 77(2), 213–219. https://doi.org/10.1002/jbm.a.30610

    Article  Google Scholar 

  21. Abou Neel, E. A., & Knowles, J. C. (2007). Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 19(1), 377–386. https://doi.org/10.1007/s10856-007-3079-5

    Article  Google Scholar 

  22. Gao, H., Tan, T., & Wang, D. (2004). Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium. Journal of Controlled Release, 96(1), 29–36. https://doi.org/10.1016/j.jconrel.2003.12.031

    Article  Google Scholar 

  23. Ahmed, I., Jones, I. A., Parsons, A. J., Bernard, J., Farmer, J., Scotchford, C. A., Walker, G. S., & Rudd, C. D. (2011). Composites for bone repair: Phosphate glass fibre reinforced PLA with varying fibre architecture. Journal of Materials Science: Materials in Medicine, 22(8), 1825–1834. https://doi.org/10.1007/s10856-011-4361-0

    Article  Google Scholar 

  24. Ahmed, I., Lewis, M., Olsen, I., & Knowles, J. C. (2004). Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials, 25(3), 491–499. https://doi.org/10.1016/s0142-9612(03)00546-5

    Article  Google Scholar 

  25. He, L., Liu, X., & Rudd, C. (2021). Additive-manufactured gyroid scaffolds of magnesium oxide, phosphate glass fiber and polylactic acid composite for bone tissue engineering. Polymers (Basel), 13(2), 270. https://doi.org/10.3390/polym13020270

    Article  Google Scholar 

  26. Kapat, K., Srivas, P. K., Rameshbabu, A. P., Maity, P. P., Jana, S., Dutta, J., Majumdar, P., Chakrabarti, D., & Dhara, S. (2017). Influence of porosity and pore-size distribution in Ti(6)Al(4) V foam on physicomechanical properties, osteogenesis, and quantitative validation of bone ingrowth by micro-computed tomography. ACS Applied Materials & Interfaces, 9(45), 39235–39248. https://doi.org/10.1021/acsami.7b13960

    Article  Google Scholar 

  27. Henkel, J., & Hutmacher, D. W. (2013). Design and fabrication of scaffold-based tissue engineering. BioNanoMaterials, 14(3–4), 171–193. https://doi.org/10.1515/bnm-2013-0021

    Article  Google Scholar 

  28. Jun, Y., & Choi, K. (2010). Design of patient-specific hip implants based on the 3D geometry of the human femur. Advances in Engineering Software, 41(4), 537–547. https://doi.org/10.1016/j.advengsoft.2009.10.016

    Article  Google Scholar 

  29. Gibson, I., Rosen, D., & Stucker, B. (2015). Development of additive manufacturing technology. In I. Gibson, D. Rosen, & B. Stucker (Eds.), Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing (1st ed., pp. 19–42). Springer New York.

    Chapter  Google Scholar 

  30. Lin, X., Chen, Q., Xiao, Y., Gao, Y., Ahmed, I., Li, M., Li, H., Zhang, K., Qiu, W., Liu, X., Boccaccini, A. R., & Qian, A. (2019). Phosphate glass fibers facilitate proliferation and osteogenesis through Runx2 transcription in murine osteoblastic cells. Journal of Biomedical Materials Research Part A, 108(2), 316–326. https://doi.org/10.1002/jbm.a.36818

    Article  Google Scholar 

  31. He, L., Zhong, J., Zhu, C., & Liu, X. (2019). Mechanical properties and in vitro degradation behavior of additively manufactured phosphate glass particles/fibers reinforced polylactide. Journal of Applied Polymer Science, 136(44), 48171. https://doi.org/10.1002/app.48171

    Article  Google Scholar 

  32. Huo, X., Zhang, B., Han, Q., Huang, Y., & Yin, J. (2023). Numerical simulation and printability analysis of fused deposition modeling with dual-temperature control. Bio-Design and Manufacturing, 6(2), 174–188. https://doi.org/10.1007/s42242-023-00239-1

    Article  Google Scholar 

  33. Friedrich, L., & Begley, M. (2020). Corner accuracy in direct ink writing with support material. Bioprinting. https://doi.org/10.1016/j.bprint.2020.e00086

    Article  Google Scholar 

  34. Han, W., Jafari, M. A., Danforth, S. C., & Safari, A. (2002). Tool path-based deposition planning in fused deposition processes. Journal of Manufacturing Science and Engineering, 124(2), 462–472. https://doi.org/10.1115/1.1455026

    Article  Google Scholar 

  35. Chesser, P., Post, B., Roschli, A., Carnal, C., Lind, R., Borish, M., & Love, L. (2019). Extrusion control for high quality printing on Big Area Additive Manufacturing (BAAM) systems. Additive Manufacturing, 28, 445–455. https://doi.org/10.1016/j.addma.2019.05.020

    Article  Google Scholar 

  36. Hrynevich, A., Liashenko, I., & Dalton, P. D. (2020). Accurate prediction of melt electrowritten laydown patterns from simple geometrical considerations. Advanced Materials Technologies. https://doi.org/10.1002/admt.202000772

    Article  Google Scholar 

  37. Mettler-Toledo. Phosphate content determination—UV Vis spectroscopy. Retrieved September 1, 2023, from https://www.mt.com/au/en/home/supportive_content/ana_chem_applications/uvvis/M9103.html

  38. Jin, Y., Du, J., Ma, Z., Liu, A., & He, Y. (2017). An optimization approach for path planning of high-quality and uniform additive manufacturing. The International Journal of Advanced Manufacturing Technology, 92(1–4), 651–662. https://doi.org/10.1007/s00170-017-0207-3

    Article  Google Scholar 

  39. Shah Mohammadi, M., Ahmed, I., Marelli, B., Rudd, C., Bureau, M. N., & Nazhat, S. N. (2010). Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations. Acta Biomaterialia, 6(8), 3157–3168. https://doi.org/10.1016/j.actbio.2010.03.002

    Article  Google Scholar 

  40. Sharmin, N., Hasan, M. S., Parsons, A. J., Rudd, C. D., & Ahmed, I. (2016). Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites. Journal of the Mechanical Behavior of Biomedical Materials, 59, 41–56. https://doi.org/10.1016/j.jmbbm.2015.12.011

    Article  Google Scholar 

  41. Sharmin, N., Gu, F., Ahmed, I., & Parsons, A. J. (2017). Compositional dependency on dissolution rate and cytocompatibility of phosphate-based glasses: Effect of B2O3 and Fe2O3 addition. Journal of Tissue Engineering, 8, 2041731417744454. https://doi.org/10.1177/2041731417744454

    Article  Google Scholar 

  42. Tan, C., Ahmed, I., Parsons Andrew, J., Zhu, C., Betanzos Fernando, B., Rudd Chris, D., & Liu, X. (2018). Effects of Fe2O3 addition and annealing on the mechanical and dissolution properties of MgO-and CaO-containing phosphate glass fibres for bio-applications. Biomedical Glasses, 4(1), 57–71. https://doi.org/10.1515/bglass-2018-0006

    Article  Google Scholar 

  43. Hasan, M. S., Ahmed, I., Parsons, A. J., Walker, G. S., & Scotchford, C. A. (2013). The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites. Journal of the Mechanical Behavior of Biomedical Materials, 28, 1–14. https://doi.org/10.1016/j.jmbbm.2013.07.014

    Article  Google Scholar 

  44. He, Y., Wang, W., & Ding, J. (2013). Effects of l-lactic acid and d,l-lactic acid on viability and osteogenic differentiation of mesenchymal stem cells. Chinese Science Bulletin, 58(20), 2404–2411. https://doi.org/10.1007/s11434-013-5798-y

    Article  Google Scholar 

  45. Wuertz, K., Godburn, K., & Iatridis, J. C. (2009). MSC response to pH levels found in degenerating intervertebral discs. Biochemical and Biophysical Research Communications, 379(4), 824–829. https://doi.org/10.1016/j.bbrc.2008.12.145

    Article  Google Scholar 

  46. Cai, F., Hong, X., Tang, X., Liu, N. C., Wang, F., Zhu, L., Xie, X. H., Xie, Z. Y., & Wu, X. T. (2019). ASIC1a activation induces calcium-dependent apoptosis of BMSCs under conditions that mimic the acidic microenvironment of the degenerated intervertebral disc. Bioscience Reports. https://doi.org/10.1042/BSR20192708

  47. Arnett, T. R. (2010). Acidosis, hypoxia and bone. Archives of Biochemistry and Biophysics, 503(1), 103–109. https://doi.org/10.1016/j.abb.2010.07.021

    Article  Google Scholar 

  48. Ahn, H., Kim, J. M., Lee, K., Kim, H., & Jeong, D. (2012). Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion, and migration. Biochemical and Biophysical Research Communications, 418(1), 144–148. https://doi.org/10.1016/j.bbrc.2011.12.149

    Article  Google Scholar 

  49. Rousselle, A. V., & Heymann, D. (2002). Osteoclastic acidification pathways during bone resorption. Bone, 30(4), 533–540. https://doi.org/10.1016/s8756-3282(02)00672-5

    Article  Google Scholar 

  50. Hiasa, M., Okui, T., Allette, Y. M., Ripsch, M. S., Sun-Wada, G.-H., Wakabayashi, H., Roodman, G. D., White, F. A., & Yoneda, T. (2017). Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3. Cancer Research, 77(6), 1283–1295. https://doi.org/10.1158/0008-5472.Can-15-3545

    Article  Google Scholar 

  51. Bonjour, J.-P. (2011). Calcium and phosphate: A duet of ions playing for bone health. Journal of the American College of Nutrition, 30(sup5), 438S-448S. https://doi.org/10.1080/07315724.2011.10719988

    Article  Google Scholar 

  52. Chen, X. R., Bai, J., Yuan, S. J., Yu, C. X., Huang, J., Zhang, T. L., & Wang, K. (2015). Calcium phosphate nanoparticles are associated with inorganic phosphate-induced osteogenic differentiation of rat bone marrow stromal cells. Chemico-Biological Interactions, 238, 111–117. https://doi.org/10.1016/j.cbi.2015.06.027

    Article  Google Scholar 

  53. Aquino-Martinez, R., Artigas, N., Gamez, B., Rosa, J. L., & Ventura, F. (2017). Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling. PLoS ONE, 12(5), e0178158. https://doi.org/10.1371/journal.pone.0178158

    Article  Google Scholar 

  54. Lin, S., Yang, G., Jiang, F., Zhou, M., Yin, S., Tang, Y., Tang, T., Zhang, Z., Zhang, W., & Jiang, X. (2019). A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Advanced Science, 6(12), 1900209. https://doi.org/10.1002/advs.201900209

    Article  Google Scholar 

  55. Chen, Z., Xie, L., Xu, J., Lin, X., Ye, J., Shao, R., & Yao, X. (2021). Changes in alkaline phosphatase, calcium, C-reactive protein, D-dimer, phosphorus and hemoglobin in elderly osteoporotic hip fracture patients. Annals of Palliative Medicine, 10(2), 1079–1088. https://doi.org/10.21037/apm-20-218

    Article  Google Scholar 

  56. Tajvar, S., Hadjizadeh, A., & Samandari, S. S. (2023). Scaffold degradation in bone tissue engineering: An overview. International Biodeterioration & Biodegradation. https://doi.org/10.1016/j.ibiod.2023.105599

    Article  Google Scholar 

  57. Schlichting, K., Schell, H., Kleemann, R. U., Schill, A., Weiler, A., Duda, G. N., & Epari, D. R. (2008). Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. American Journal of Sports Medicine, 36(12), 2379–2391. https://doi.org/10.1177/0363546508322899

    Article  Google Scholar 

  58. Wu, D., Isaksson, P., Ferguson, S. J., & Persson, C. (2018). Young’s modulus of trabecular bone at the tissue level: A review. Acta Biomaterialia, 78, 1–12. https://doi.org/10.1016/j.actbio.2018.08.001

    Article  Google Scholar 

  59. Zhu, G., Zhang, T., Chen, M., Yao, K., Huang, X., Zhang, B., Li, Y., Liu, J., Wang, Y., & Zhao, Z. (2021). Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioactive Materials, 6(11), 4110–4140. https://doi.org/10.1016/j.bioactmat.2021.03.043

    Article  Google Scholar 

  60. Chen, Z., Yan, X., Yin, S., Liu, L., Liu, X., Zhao, G., Ma, W., Qi, W., Ren, Z., Liao, H., Liu, M., Cai, D., & Fang, H. (2020). Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science & Engineering C Materials for Biological Applications, 106, 110289. https://doi.org/10.1016/j.msec.2019.110289

    Article  Google Scholar 

  61. Murphy, C. M., Haugh, M. G., & O’Brien, F. J. (2010). The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 31(3), 461–466. https://doi.org/10.1016/j.biomaterials.2009.09.063

    Article  Google Scholar 

  62. Taniguchi, N., Fujibayashi, S., Takemoto, M., Sasaki, K., Otsuki, B., Nakamura, T., Matsushita, T., Kokubo, T., & Matsuda, S. (2016). Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science & Engineering C Materials for Biological Applications, 59, 690–701. https://doi.org/10.1016/j.msec.2015.10.069

    Article  Google Scholar 

  63. Cheng, M. Q., Wahafu, T., Jiang, G. F., Liu, W., Qiao, Y. Q., Peng, X. C., Cheng, T., Zhang, X. L., He, G., & Liu, X. Y. (2016). A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Scientific Reports, 6, 24134. https://doi.org/10.1038/srep24134

    Article  Google Scholar 

  64. Comminal, R., Serdeczny, M. P., Pedersen, D. B., & Spangenberg, J. (2019). Motion planning and numerical simulation of material deposition at corners in extrusion additive manufacturing. Additive Manufacturing. https://doi.org/10.1016/j.addma.2019.06.005

    Article  Google Scholar 

  65. Jeyachandran, P., Bontha, S., Bodhak, S., Balla, V. K., & Doddamani, M. (2021). Material extrusion additive manufacturing of bioactive glass/high density polyethylene composites. Composites Science and Technology. https://doi.org/10.1016/j.compscitech.2021.108966

    Article  Google Scholar 

  66. Giles Jr., H. F., Wagner Jr., J. R., & Mount III, E. M. (2005). 21—Testing properties. In Extrusion: The definitive processing guide and handbook (pp. 195–205). William Andrew.

Download references

Acknowledgements

This work received financial support from the National Key Research and Development Program of China (Grant No. 2018YFA0703000), the National Natural Science Foundation of China (Grant Nos. 52250006, 52075482), the Ningbo Top Medical and Health Research Program (Grant No. 2022020304), and the Ningbo Key Science and Technology Major Project (Grant No. 2022Z143).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Liu, Jun Yin or Xiang Gao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3964 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Huang, Y., Gu, J. et al. Modulated Degradation Rates of Bone Mineral-Like Calcium Phosphate Glass to Support the Proliferation and Osteogenic Differentiation of Bone Marrow-Derived Stem Cells. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00540-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00540-4

Keywords

Navigation