Skip to main content
Log in

Adaptive Control of Lower-Limb Exoskeletons for Walking Assistance Based on Inter-Joint Coordination

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Unilateral motor impairment can disrupt the coordination between the joints, impeding the patient’s normal gait. To assist such patients to walk normally and naturally, an adaptive control algorithm based on inter-joint coordination was proposed in this work for lower-limb exoskeletons. The control strategy can generate the reference trajectory of the affected leg in real time based on a motion coordination model between the joints, and adopt an adaptive controller with virtual windows to track the reference trajectory. Long Short-Term Memory (LSTM) network was also adopted to establish the coordination model between the joints of both lower limbs, which was optimized by preprocessing angle information and adding gait phase information. In the adaptive controller, the virtual windows were symmetrically distributed around the reference trajectory, and its width was adjusted according to the gait phase of the auxiliary leg. In addition, the impedance parameters of the controller were updated online to match the motion capacity of the affected leg based on the spatiotemporal symmetry factors between the bilateral gaits. The LSTM coordination model demonstrated good accuracy and generality in the gait database of seven individuals, with an average root mean square error of 3.5\(^\circ\) and 4.1\(^\circ\) for the hip and knee joint angle estimation, respectively. To further evaluate the control algorithm, four healthy subjects walked wearing the exoskeleton while additional weights were added around the ankle joint to simulate an asymmetric gait. From the experimental results, it was shown that the algorithm improved the gait symmetry of the subjects to a normal level while exhibiting great adaptability to different subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Baud, R., Manzoori, A. R., Ijspeert, A., & Bouri, M. (2021). Review of control strategies for lower-limb exoskeletons to assist gait. Journal of Neuroengineering and Rehabilitation, 18(1), 1–34. https://doi.org/10.1186/s12984-021-00906-3

    Article  Google Scholar 

  2. Qiu, S., Pei, Z. C., Wang, C., & Tang, Z. Y. (2023). Systematic review on wearable lower extremity robotic exoskeletons for assisted locomotion. Journal of Bionic Engineering, 20(2), 436–469. https://doi.org/10.1007/s42235-022-00289-8

    Article  Google Scholar 

  3. Wang, J. Q., Wu, D. M., Gao, Y. Z., Wang, X. R., Li, X. Q., Xu, G. Q., & Dong, W. (2022). Integral real-time locomotion mode recognition based on GA-CNN for lower limb exoskeleton. Journal of Bionic Engineering, 19(5), 1359–1373. https://doi.org/10.1007/s42235-022-00230-z

    Article  Google Scholar 

  4. Liu, K. P., Li, L., Li, W. T., Gu, J., & Sun, Z. B. (2023). Compliant control of lower limb rehabilitation exoskeleton robot based on flexible transmission. Journal of Bionic Engineering, 20(3), 1021–1035. https://doi.org/10.1007/s42235-022-00302-0

    Article  Google Scholar 

  5. Hussain, F., Goecke, R., & Mohammadian, M. (2021). Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 235(12), 1375–1385. https://doi.org/10.1177/09544119211032010

    Article  Google Scholar 

  6. Plaza, A., Hernandez, M., Puyuelo, G., Garces, E., & Garcia, E. (2023). Lower-limb medical and rehabilitation exoskeletons: A review of the current designs. IEEE Reviews in Biomedical Engineering, 16, 278–291. https://doi.org/10.1109/rbme.2021.3078001

    Article  Google Scholar 

  7. Shi, D., Zhang, W. X., Zhang, W., & Ding, X. L. (2019). A review on lower limb rehabilitation exoskeleton robots. Chinese Journal of Mechanical Engineering, 32(1), 1–11. https://doi.org/10.1186/s10033-019-0389-8

    Article  Google Scholar 

  8. Kapsalyamov, A., Jamwal, P. K., Hussain, S., & Ghayesh, M. H. (2019). State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access, 7, 95075–95086. https://doi.org/10.1109/access.2019.2928010

    Article  Google Scholar 

  9. Liang, J. J. Y., Zhang, Q. H., Liu, Y., Wang, T., & Wan, G. F. (2022). A review of the design of load-carrying exoskeletons. Science China-Technological Sciences, 65(9), 2051–2067. https://doi.org/10.1007/s11431-022-2145-x

    Article  Google Scholar 

  10. Martínez Mata, A. J., Blanco-Ortega, A., Guzmán-Valdivia, C. H., Abúndez-Pliego, A., García-Velarde, M. A., Magadán-Salazar, A., & Osorio-Sánchez, R. (2023). Engineering design strategies for force augmentation exoskeletons: A general review. International Journal of Advanced Robotic Systems, 20(1), 17298806221149472. https://doi.org/10.1177/17298806221149473

    Article  Google Scholar 

  11. Masengo, G., Zhang, X. D., Dong, R. L., Alhassan, A. B., Hamza, K., & Mudaheranwa, E. (2023). Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics, 16, 913748. https://doi.org/10.3389/fnbot.2022.913748

    Article  Google Scholar 

  12. Mokhtari, M., Taghizadeh, M., & Ghanbari, P. G. (2022). Fault tolerant control based on backstepping nonsingular terminal integral sliding mode and impedance control for a lower limb exoskeleton. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 236(6), 2698–2713. https://doi.org/10.1177/09544062211035792

    Article  Google Scholar 

  13. Nazari, F., Mohajer, N., Nahavandi, D., Khosravi, A., & Nahavandi, S. (2023). Applied exoskeleton technology: A comprehensive review of physical and cognitive human-robot interaction. IEEE Transactions on Cognitive and Developmental Systems, 15(3), 1102–1122. https://doi.org/10.1109/tcds.2023.3241632

    Article  Google Scholar 

  14. Mokhtari, M., Taghizadeh, M., & Mazare, M. (2021). Hybrid adaptive robust control based on CPG and ZMP for a lower limb exoskeleton. Robotica, 39(2), 181–199. https://doi.org/10.1017/S0263574720000260

    Article  Google Scholar 

  15. Mokhtari, M., Taghizadeh, M., & Mazare, M. (2021). Impedance control based on optimal adaptive high order super twisting sliding mode for a 7-DOF lower limb exoskeleton. Meccanica, 56(3), 535–548. https://doi.org/10.1007/s11012-021-01308-4

    Article  MathSciNet  Google Scholar 

  16. Zhang, T., Li, Y., Ning, C., & Zeng, B. (2022). Development and adaptive assistance control of the robotic hip exoskeleton to improve gait symmetry and restore normal gait. IEEE Transactions on Automation Science and Engineering, 21(1), 799–809. https://doi.org/10.1109/TASE.2022.3229396

    Article  Google Scholar 

  17. de Miguel-Fernandez, J., Lobo-Prat, J., Prinsen, E., Font-Llagunes, J. M., & Marchal-Crespo, L. (2023). Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: A systematic review and analysis of clinical effectiveness. Journal of Neuroengineering and Rehabilitation, 20(1), 23. https://doi.org/10.1186/s12984-023-01144-5

    Article  Google Scholar 

  18. Patterson, K. K., Gage, W. H., Brooks, D., Black, S. E., & McIlroy, W. E. (2010). Changes in gait symmetry and velocity after stroke: A cross-sectional study from weeks to years after stroke. Neurorehabilitation Neural Repair, 24(9), 783–790. https://doi.org/10.1177/1545968310372091

    Article  Google Scholar 

  19. Beyaert, C., Vasa, R., & Frykberg, G. E. (2015). Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiologie Clinique/Clinical Neurophysiology, 45(4), 335–355. https://doi.org/10.1016/j.neucli.2015.09.005

    Article  Google Scholar 

  20. Aguirre-Ollinger, G., & Yu, H. (2021). Lower-limb exoskeleton with variable-structure series elastic actuators: Phase-synchronized force control for gait asymmetry correction. IEEE Transactions on Robotics, 37(3), 763–779. https://doi.org/10.1109/TRO.2020.3034017

    Article  Google Scholar 

  21. Zhong, B., Guo, K., Yu, H., & Zhang, M. (2022). Toward gait symmetry enhancement via a cable-driven exoskeleton powered by series elastic actuators. IEEE Robotics and Automation Letters, 7(2), 786–793. https://doi.org/10.1109/LRA.2021.3130639

    Article  Google Scholar 

  22. Malcolm, P., Galle, S., Van den Berghe, P., & De Clercq, D. (2018). Exoskeleton assistance symmetry matters: Unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance. Journal of Neuroengineering and Rehabilitation, 15, 1–11. https://doi.org/10.1186/s12984-018-0381-z

    Article  Google Scholar 

  23. Lora-Millan, J. S., Sanchez-Cuesta, F. J., Romero, J. P., Moreno, J. C., & Rocon, E. (2022). A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients. Journal of Neuroengineering and Rehabilitation, 19(1), 109. https://doi.org/10.1186/s12984-022-01088-2

    Article  Google Scholar 

  24. Hassan, M., Kadone, H., Ueno, T., Hada, Y., Sankai, Y., & Suzuki, K. (2018). Feasibility of synergy-based exoskeleton robot control in hemiplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(6), 1233–1242. https://doi.org/10.1109/TNSRE.2018.2832657

    Article  Google Scholar 

  25. Vallery, H., van Asseldonk, E. H. F., Buss, M., & van der Kooij, H. (2009). Reference trajectory generation for rehabilitation robots: Complementary limb motion estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(1), 23–30. https://doi.org/10.1109/TNSRE.2008.2008278

    Article  Google Scholar 

  26. Liang F. Y., Zhong C. H., Zhao X., Lo Castro D., Chen B., Gao F., & Liao W. H. (2018) Online adaptive and lstm-based trajectory generation of lower limb exoskeletons for stroke rehabilitation. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 27–32). IEEE. https://doi.org/10.1109/ROBIO.2018.8664778.

  27. Zhang, P., & Zhang, J. (2022). Deep learning analysis based on multi-sensor fusion data for hemiplegia rehabilitation training system for stoke patients. Robotica, 40(3), 780–797. https://doi.org/10.1017/S0263574721000801

    Article  Google Scholar 

  28. Wei, Q., Li, Z., Zhao, K., Kang, Y., & Su, C.-Y. (2020). Synergy-based control of assistive lower-limb exoskeletons by skill transfer. IEEE-ASME Transactions on Mechatronics, 25(2), 705–715. https://doi.org/10.1109/TMECH.2019.2961567

    Article  Google Scholar 

  29. Xiong, D., Zhang, D., Zhao, X., Chu, Y., & Zhao, Y. (2021). Synergy-based neural interface for human gait tracking with deep learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 2271–2280. https://doi.org/10.1109/TNSRE.2021.3123630

    Article  Google Scholar 

  30. Xie, H., Li, G., Zhao, X., & Li, F. (2020). Prediction of limb joint angles based on multi-source signals by GS-GRNN for exoskeleton wearer. Sensors, 20(4), 1104. https://doi.org/10.3390/s20041104

    Article  Google Scholar 

  31. Chen, Y. L., Yang, I. J., Fu, L. C., Lai, J. S., Liang, H. W., & Lu, L. (2021). IMU-based estimation of lower limb motion trajectory with graph convolution network. IEEE Sensors Journal, 21(21), 24549–24557. https://doi.org/10.1109/JSEN.2021.3115105

    Article  Google Scholar 

  32. Li, C., He, Y., Chen, T., Chen, X., & Tian, S. (2021). Real-time gait event detection for a lower extremity exoskeleton robot by infrared distance sensors. IEEE Sensors Journal, 21(23), 27116–27123. https://doi.org/10.1109/JSEN.2021.3111212

    Article  Google Scholar 

  33. Li, Z., Ren, Z., Zhao, K., Deng, C., & Feng, Y. (2020). Human-cooperative control design of a walking exoskeleton for body weight support. IEEE Transactions on Industrial Electronics, 16(5), 2985–2996. https://doi.org/10.1109/TII.2019.2900121

    Article  Google Scholar 

  34. Zanotto D., Stegall P., & Agrawal S. K. (2014) Adaptive assist-as-needed controller to improve gait symmetry in robot-assisted gait training. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp 724–729). IEEE. https://doi.org/10.1109/ICRA.2014.6906934.

  35. Bovi, G., Rabuffetti, M., Mazzoleni, P., & Ferrarin, M. (2011). A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait & posture, 33(1), 6–13. https://doi.org/10.1016/j.gaitpost.2010.08.009

    Article  Google Scholar 

  36. Shushtari, M., Nasiri, R., & Arami, A. (2022). Online reference trajectory adaptation: A personalized control strategy for lower limb exoskeletons. IEEE Robotics and Automation Letters, 7(1), 128–134. https://doi.org/10.1109/LRA.2021.3115572

    Article  Google Scholar 

Download references

Funding

This work was supported by the Graduate Scientific Research and Innovation Foundation of Chongqing, China (CYB19062), and the China Scholarship Council (CSC202206050121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Approval of all ethical and experimental procedures and protocols was granted by Chongqing University Cancer Hospital Ethics Committee under Application No. CZLS2021070-A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Luo, L., Liu, Z. et al. Adaptive Control of Lower-Limb Exoskeletons for Walking Assistance Based on Inter-Joint Coordination. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00537-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00537-z

Keywords

Navigation