Skip to main content
Log in

Design and Gait Planning of a Worm-inspired Metameric Robot for Pipe Crawling

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The earthworm has been attracted much attention in the research and development of biomimetic robots due to their unique locomotion mechanism, compact structure, and small motion space. This paper presents a new design and prototype of a worm-inspired metameric robot with a movement pattern similar to that of earthworms. The robot consists of multiple telescopic modules connected in series through joint modules. The telescopic module mimics the contraction and elongation motion modes of the earthworm segments. A kinematic and dynamic analysis is conducted on the telescopic module, and an input torque calculation method is provided to ensure sufficient friction between the robot and the pipe wall. The gait modes of the prototype robot for straight and turning locomotion are introduced, and these modes are extended to robots constructed by different numbers of telescopic modules. In addition, a method is proposed to increase the friction between the robot and the pipe wall in the aforementioned gait modes without changing the robot structure, thereby improving the robot’s motion ability in pipelines. The theoretical model of gait modes has also been validated through gait experiments. The findings of this paper would provide a useful basis for the design, modeling, and control of future worm inspired robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Liu, J. C., Zhang, C., Liu, Z. N., Zhao, R., An, D., Wei, Y. G., Wu, Z. X., & Yu, J. Z. (2021). Design and analysis of a novel tendon-driven continuum robotic dolphin. Bioinspiration & Biomimetics, 16(6), 065002.

    Article  Google Scholar 

  2. Schmickl, T., Hamann, H., Wörn, H., & Crailsheim, K. (2009). Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Robotics and Autonomous Systems, 57(9), 913–921.

    Article  Google Scholar 

  3. Omari, M., Ghommem, M., Romdhane, L., & Hajj, M. R. (2022). Performance analysis of bio-inspired transformable robotic fish tail. Ocean Engineering, 244, 110406.

    Article  Google Scholar 

  4. Cyr, A., Avarguès-Weber, A., & Thériault, F. (2017). Sameness/difference spiking neural circuit as a relational concept precursor model: A bio-inspired robotic implementation. Biologically Inspired Cognitive Architectures, 21, 59–66.

    Article  Google Scholar 

  5. Ravalli, A., Rossi, C., & Marrazza, G. (2017). Bio-inspired fish robot based on chemical sensors. Sensors & Actuators: B Chemical, 239, 325–329.

    Article  Google Scholar 

  6. Bachega, R. P., Pires, R., & Campo, A. B. (2013). Force sensing to control a bio-inspired walking robot. IFAC Proceedings Volumes, 46(7), 105–109.

    Article  Google Scholar 

  7. Liu, Y. W., Sun, S. W., Wu, X., & Mei, T. (2015). A wheeled wall-climbing robot with bio-inspired spine mechanisms. Journal of Bionic Engineering, 12(1), 17–28.

    Article  Google Scholar 

  8. Zhang, Y. F., Yang, D. Z., Yan, P. N., Zhou, P. W., Zou, J., & Gu, G. Y. (2022). Inchworm inspired multimodal soft robots with crawling, climbing, and transitioning locomotion. IEEE Transactions on Robotics, 38(3), 1806–1819.

    Article  Google Scholar 

  9. Burgner-Kahrs, J., Rucker, D. C., & Choset, H. (2015). Continuum robots for medical applications: A survey. IEEE Transactions on Robotics, 31(6), 1261–1280.

    Article  Google Scholar 

  10. Gao, Z. H., Shi, Q., Fukuda, T., Li, C., & Huang, Q. (2019). An overview of biomimetic robots with animal behaviors. Neurocomputing, 332, 339–350.

    Article  Google Scholar 

  11. Nakamura, T., Kato, T., Iwanaga, T., & Muranaka, Y. (2006). Peristaltic crawling robot based on the locomotion mechanism of earthworms. IFAC Proceedings Volumes, 39(16), 139–144.

    Article  Google Scholar 

  12. Guetta, O., Shachaf, D., Katz, R., & Zarrouk, D. (2023). A novel wave-like crawling robot has excellent swimming capabilities. Bioinspiration & Biomimetics, 18(2), 026006.

    Article  Google Scholar 

  13. Chen, R., Tao, X. R., Cao, C. Y., Jiang, P., Luo, J., & Sun, Y. (2023). A soft, lightweight flipping robot with versatile motion capabilities for wall-climbing applications. IEEE Transactions on Robotics, 39(5), 3960–3976.

    Article  Google Scholar 

  14. Hemingway, E. G., & O’Reilly, O. M. (2020). Continuous models for peristaltic locomotion with application to worms and soft robots. Biomechanics and Modeling in Mechanobiology, 20(1), 5–30.

    Article  Google Scholar 

  15. Whitman, J., Zevallos, N., Travers, M., & Choset, H. (2018). Snake robot urban search after the 2017 Mexico City earthquake. IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). Philadelphia, PA, USA, 1–6.

  16. Roslin, N. S., Anuar, A., Jalal, M. F. A., & Sahari, K. S. M (2012). A review: Hybrid locomotion of in-pipe inspection robot. Procedia Engineering, 41, 1456–1462.

    Article  Google Scholar 

  17. Guo, B. Y., Liu, Y., Birler, R., & Prasad, S. (2020). Self-propelled capsule endoscopy for small-bowel examination: Proof-of-concept and model verification. International Journal of Mechanical Sciences, 174, 105506.

    Article  Google Scholar 

  18. Naderi, N., Najarian, S., Hosseinali, A., & Karevan, H. (2013). Modeling and dynamic analysis of the worm-like part of an innovative robot applicable in colonoscopy. International Journal of Medical Robotics & Computer Assisted Surgery, 9(3), 371–378.

    Article  Google Scholar 

  19. Kwon, J., Park, S., Park, J., & Kim, B. (2007). Evaluation of the critical stroke of an earthworm-like robot for capsule endoscopes. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 221(4), 397–405.

    Article  Google Scholar 

  20. Jian, X. G., Wang, Y. F., & Yang, P. C. (2012). Research progress on biomimetic robots based on the mechanism of earthworm peristalsis. Chinese Journal of Engineering Machinery, 10(03), 359–363.

    Google Scholar 

  21. Zhang, B. Y., Fan, Y. W., Yang, P. H., Cao, T. L., & Liao, H. G. (2019). Worm-like soft robot for complicated tubular environments. Soft Robotics, 6(3), 399–413.

    Article  Google Scholar 

  22. Boxerbaum, A. S., Shaw, K. M., Chiel, H. J., & Quinn, R. D. (2012). Continuous wave peristaltic motion in a robot. The International Journal of Robotics Research, 31(3), 302–318.

    Article  Google Scholar 

  23. Coyle, S., Majidi, C., LeDuc, P., & Hsia, K. J. (2018). Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mechanics Letters, 22, 51–59.

    Article  Google Scholar 

  24. Hu, Q. Q., Dong, E. B., & Sun, D. (2023). Soft modular climbing robots. IEEE Transactions on Robotics, 39(1), 399–416.

    Article  Google Scholar 

  25. Lam, T. L., & Xu, Y. S. (2011). Climbing strategy for a flexible tree climbing robot—treebot. IEEE Transactions on Robotics, 27(6), 1107–1117.

    Article  Google Scholar 

  26. Ai, X. P., Yue, H. M., & Wang, W. D. (2023). Crawling soft robot exploiting wheel-legs and multimodal locomotion for high terrestrial maneuverability. IEEE Transactions on Robotics, 39(6), 4230–4239.

    Article  Google Scholar 

  27. Böhm, V., Kaufhold, T., Zeidis, I., & Zimmermann, K. (2016). Dynamic analysis of a spherical mobile robot based on a tensegrity structure with two curved compressed members. Archive of Applied Mechanics, 87(5), 853–864.

    Article  Google Scholar 

  28. Umedachi, T., Vikas, V., & Trimmer, B. A. (2016). Softworms: The design and control of non-pneumatic, 3d-printed, deformable robots. Bioinspiration & Biomimetics, 11(2), 025001.

    Article  Google Scholar 

  29. Bi, Z. H., Zhou, Q. Y., & Fang, H. B. (2023). A worm-snake-inspired metameric robot for multi-modal locomotion: Design, modeling, and unified gait control. International Journal of Mechanical Sciences, 254, 108436.

    Article  Google Scholar 

  30. Song, C. W., Lee, D. J., & Lee, S. Y. (2016). Bioinspired segment robot with earthworm-like plane locomotion. Journal of Bionic Engineering, 13(2), 292–302.

    Article  Google Scholar 

  31. Jin, Y. C., Li, J., Liu, S. Y., Cao, G. Q., & Liu, J. L. (2023). A worm-inspired robot based on origami structures driven by the magnetic field. Bioinspiration & Biomimetics, 18(4), 046008.

    Article  Google Scholar 

  32. Mei, D., Zhao, X., Tang, G. Q., Wang, J. F., Zhao, C., Li, C. X., & Wang, Y. J. (2022). A single-joint worm-like robot inspired by geomagnetic navigation. Machines, 10(11), 1040.

    Article  Google Scholar 

  33. Sattarov, R. R., & Almaev, M. A. (2017). Electromagnetic worm-like locomotion system for in-pipe robots: design and vibration-driven motion analysis. International Scientific and Technical Conference on Dynamics of Systems, Mechanisms and Machines, Omsk, Russia, 1–6.

  34. Zarrouk, D., Sharf, I., & Shoham, M. (2012). Experimental validation of locomotion efficiency of worm-like robots and contact compliance. IEEE International Conference on Robotics & Automation, Saint Paul, MN, USA, 5080–5085.

Download references

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (Grants No. 52275031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Shi, Q. & Chen, Z. Design and Gait Planning of a Worm-inspired Metameric Robot for Pipe Crawling. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00497-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00497-4

Keywords

Navigation