Skip to main content
Log in

A Self-sensing TSA-actuated Anthropomorphic Robot Hand

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators (TSAs). The use of TSAs provides several advantages such as muscle-like structures, high transmission ratios, large output forces, high efficiency, compactness, inherent compliance, and the ability to transmit power over distances. However, conventional sensors used in TSA-actuated robotic hands increase stiffness, mass, volume, and complexity, making feedback control challenging. To address this issue, a novel self-sensing approach is proposed using strain-sensing string based on Conductive Polymer Composite (CPC). By measuring the resistance changes in the strain-sensing string, the bending angle of the robot hand's fingers can be estimated, enabling closed-loop control without external sensors. The developed self-sensing anthropomorphic robot hand comprises a 3D-printed structure with five fingers, a palm, five self-sensing TSAs, and a 3D-printed forearm. Experimental studies validate the self-sensing properties of the TSA and the anthropomorphic robot hand. Additionally, a real-time Virtual Reality (VR) monitoring system is implemented for visualizing and monitoring the robot hand's movements using its self-sensing capabilities. This research contributes valuable insights and advancements to the field of intelligent prosthetics and robotic end grippers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gama Melo, E. N., Aviles Sanchez, O. F., &Amaya Hurtado, D. (2014). Anthropomorphic robotic hands: A review. Ingeniería y Desarrollo, 32(2), 279–313. https://doi.org/10.14482/inde.32.2.4715

  2. Piazza, C., Grioli, G., Catalano, M., & Bicchi, A. (2019). A century of robotic hands. Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 1–32. https://doi.org/10.1146/annurev-control-060117105003

    Article  Google Scholar 

  3. Chen, Z., Zhan, F., Jiang, J., Wu, D., & Sun, J. (2023). A review on soft hand rehabilitation robot. Recent Patents on Engineering, 17(3), 12–36. https://doi.org/10.2174/1872212117666220722141338

    Article  Google Scholar 

  4. Schulz, A., Pylatiuk, C., Kargov, A., Oberle, R., &Bretthauer, G. Progress in the development of anthropomorphic fluidic hands and their applications. Proceedings of Mechatronics & Robotics, Santa, Monica, 2004, 936–941. https://doi.org/10.1109/ICHR.2004.1442671

  5. Reichel, M. Transformation of shadow dextrous hand and shadow finger test unit from prototype to product for intelligent manipulation and grasping. Proceedings of Intelligent Manipulation and Grasping International Conference, Genova, Italy, 2004, 70.

  6. Liang, D., & Zhang, W. (2017). Pasa-gb hand: A novel parallel and self-adaptive robot hand with gear-belt mechanisms. Journal of Intelligent & Robotic Systems, 90(1–2), 3–17. https://doi.org/10.1007/s10846-017-0644-0

    Article  Google Scholar 

  7. Kawasaki, H., Shimomura, H., & Shimizu, Y. (2001). Educational–industrial complex development of an anthropomorphic robot hand’Gifu hand’. Advanced Robotics, 15(3), 357–363. https://doi.org/10.1163/156855301300235913

    Article  Google Scholar 

  8. Gao, X., Jin, M., Jiang, L., Xie, Z., He, P., Yang, L., Liu, Y., Wei, R., Cai, H., &Liu, H. The HIT/DLR dexterous hand: Work in progress. Proceedings of 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, China, 2003, 3164–3168. https://doi.org/10.1109/ROBOT.2003.1242077

  9. Bauer, D., Bauer, C., Lakshmipathy, A., Shu, R., &Pollard, N. S. Towards very low-cost iterative prototyping for fully printable dexterous soft robotic hands. Proceedings of 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, United Kingdom, 2022, 490–497. https://doi.org/10.1109/RoboSoft54090.2022.9762122

  10. Zhang, J., Sheng, J., O’Neill, C. T., Walsh, C. J., Wood, R. J., Ryu, J.-H., Desai, J. P., & Yip, M. C. (2019). Robotic artificial muscles: Current progress and future perspectives. IEEE Transactions on Robotics, 35(3), 761–781. https://doi.org/10.1109/TRO.2019.2894371

    Article  Google Scholar 

  11. Mirvakili, S. M., & Hunter, I. W. (2018). Artificial muscles: Mechanisms, applications, and challenges. Advanced Materials, 30(6), 1704407. https://doi.org/10.1002/adma.201704407

    Article  Google Scholar 

  12. Rothemund, P., Kellaris, N., Mitchell, S. K., Acome, E., & Keplinger, C. (2021). Hasel artificial muscles for a new generation of lifelike robots-recent progress and future opportunities. Advanced Materials, 33(19), e2003375. https://doi.org/10.1002/adma.202003375

    Article  Google Scholar 

  13. Xia, M., Wang, H., Yin, Q., Shang, J., Luo, Z., & Zhu, Q. (2023). Design and mechanics of a composite wave-driven soft robotic fin for biomimetic amphibious robot. Journal of Bionic Engineering, 20(3), 934–952. https://doi.org/10.1007/s42235-022-00328-4

    Article  Google Scholar 

  14. Deimel, R., & Brock, O. (2015). A novel type of compliant and underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research, 35(1–3), 161–185. https://doi.org/10.1177/0278364915592961

    Article  Google Scholar 

  15. Zhao, H., O'Brien, K., Li, S., &Shepherd, R. F. (2016). Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Science robotics, 1(1). https://doi.org/10.1126/scirobotics.aai7529

  16. Zhou, J., Yi, J., Chen, X., Liu, Z., & Wang, Z. (2018). BCL-13: A 13-DOF soft robotic hand for dexterous grasping and in-hand manipulation. IEEE Robotics and Automation Letters, 3(4), 3379–3386. https://doi.org/10.1109/lra.2018.2851360

    Article  Google Scholar 

  17. Polygerinos, P., Galloway, K. C., Savage, E., Herman, M., O'Donnell, K., &Walsh, C. J. Soft robotic glove for hand rehabilitation and task specific training. Proceedings of 2015 IEEE international conference on robotics and automation (ICRA), Seattle, WA, USA, 2015, 2913–2919. https://doi.org/10.1109/ICRA.2015.7139597

  18. Wehner, M., Tolley, M. T., Mengüç, Y., Park, Y.-L., Mozeika, A., Ding, Y., Onal, C., Shepherd, R. F., Whitesides, G. M., & Wood, R. J. (2014). Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robotics, 1(4), 263–274. https://doi.org/10.1089/soro.2014.0018

    Article  Google Scholar 

  19. She, Y., Li, C., Cleary, J., &Su, H.-J. (2015). Design and fabrication of a soft robotic hand with embedded actuators and sensors. Journal of Mechanisms and Robotics, 7(2). https://doi.org/10.1115/1.4029497

  20. Cho, K.-J., Rosmarin, J., &Asada, H. Sbc hand: A lightweight robotic hand with an SMA actuator array implementing C-segmentation. Proceedings of Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 2007, 921–926. https://doi.org/10.1109/robot.2007.363103

  21. Andrianesis, K., &Tzes, A. Design of an anthropomorphic prosthetic hand driven by shape memory alloy actuators. Proceedings of 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 2008, 517–522. https://doi.org/10.1109/BIOROB.2008.4762907

  22. Jin, H., Dong, E., Xu, M., & Yang, J. (2020). A smart and hybrid composite finger with biomimetic tapping motion for soft prosthetic hand. Journal of Bionic Engineering, 17(3), 484–500. https://doi.org/10.1007/s42235-020-0039-y

    Article  Google Scholar 

  23. Yip, M. C., &Niemeyer, G. High-performance robotic muscles from conductive nylon sewing thread. Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, 2313–2318. https://doi.org/10.1109/ICRA.2015.7139506

  24. Cho, K. H., Song, M. G., Jung, H., Park, J., Moon, H., Koo, J. C., Nam, J.-D., &Choi, H. R. A robotic finger driven by twisted and coiled polymer actuator. Proceedings of Electroactive Polymer Actuators and Devices (EAPAD) 2016, Las Vegas, Nevada, USA, 2016, 97981J. https://doi.org/10.1117/12.2218957

  25. Mohd Jani, J., Leary, M., & Subic, A. (2017). Designing shape memory alloy linear actuators: A review. Journal of Intelligent Material Systems and Structures, 28(13), 1699–1718. https://doi.org/10.1177/1045389X16679296

    Article  Google Scholar 

  26. Hunter, I. W., Hollerbach, J. M., &Ballantyne, J. (1991). A comparative analysis of actuator technologies for robotics. Robotics Review, 2, 299–342. https://doi.org/10.5555/146312.146323

  27. Haines, C. S., Lima, M. D., Li, N., Spinks, G. M., Foroughi, J., Madden, J. D., Kim, S. H., Fang, S., De Andrade, M. J., & Göktepe, F. (2014). Artificial muscles from fishing line and sewing thread. Science, 343(6173), 868–872. https://doi.org/10.1126/science.124690

    Article  Google Scholar 

  28. Haines, C. S., Li, N., Spinks, G. M., Aliev, A. E., Di, J., & Baughman, R. H. (2016). New twist on artificial muscles. Proceedings of the National Academy of Sciences, 113(42), 11709–11716. https://doi.org/10.1073/pnas.1605273113

    Article  Google Scholar 

  29. Würtz, T., May, C., Holz, B., Natale, C., Palli, G., &Melchiorri, C. The twisted string actuation system: Modeling and control. Proceedings of 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, QC, Canada, 2010, 1215–1220. https://doi.org/10.1109/AIM.2010.5695720

  30. Sonoda, T., &Godler, I. Multi-fingered robotic hand employing strings transmission named “Twist Drive”. Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, China, 2010, 2733–2738. https://doi.org/10.1109/IROS.2010.5652886

  31. Palli, G., Natale, C., May, C., Melchiorri, C., & Wurtz, T. (2012). Modeling and control of the twisted string actuation system. IEEE/ASME Transactions on Mechatronics, 18(2), 664–673. https://doi.org/10.1109/tmech.2011.2181855

    Article  Google Scholar 

  32. Singh, H., Popov, D., Gaponov, I., & Ryu, J.-H. (2016). Twisted string-based passively variable transmission: Concept, model, and evaluation. Mechanism and Machine Theory, 100, 205–221. https://doi.org/10.1016/j.mechmachtheory.2016.02.009

    Article  Google Scholar 

  33. Gaponov, I., Popov, D., & Ryu, J.-H. (2014). Twisted string actuation systems: A study of the mathematical model and a comparison of twisted strings. IEEE/ASME Transactions on Mechatronics, 19(4), 1331–1342. https://doi.org/10.1109/tmech.2013.2280964

    Article  Google Scholar 

  34. Jeong, S. H., Kim, K.-S., & Kim, S. (2016). Designing anthropomorphic robot hand with active dual-mode twisted string actuation mechanism and tiny tension sensors. IEEE Robotics and Automation Letters, 2(3), 1571–1578. https://doi.org/10.1109/lra.2017.2647800

    Article  Google Scholar 

  35. Palli, G., Melchiorri, C., Vassura, G., Scarcia, U., Moriello, L., Berselli, G., Cavallo, A., De Maria, G., Natale, C., Pirozzi, S., May, C., Ficuciello, F., & Siciliano, B. (2014). The DEXMART hand: Mechatronic design and experimental evaluation of synergy-based control for human-like grasping. International Journal of Robotics Research, 33(5), 799–824. https://doi.org/10.1177/0278364913519897

    Article  Google Scholar 

  36. Palli, G., Pirozzi, S., Natale, C., De Maria, G., &Melchiorri, C. Mechatronic design of innovative robot hands: Integration and control issues. Proceedings of 2013 Ieee/Asme International Conference on Advanced Intelligent Mechatronics (Aim): Mechatronics for Human Wellbeing, Wollongong, NSW, Australia, 2013, 1755–1760. https://doi.org/10.1109/AIM.2013.6584351

  37. May, C., Schmitz, K., Becker, M., &Nienhaus, M. Investigation of twisted string actuation with a programmable mechanical load test stand. Proceedings of Innovative Small Drives and Micro-Motor Systems; 9. GMM/ETG Symposium, Nuremberg, Germany, 2013, 1–6.

  38. Tavakoli, M., Batista, R., & Sgrigna, L. (2016). The UC softhand: Light weight adaptive bionic hand with a compact twisted string actuation system. Actuators, 5(1), 1. https://doi.org/10.3390/act5010001

    Article  Google Scholar 

  39. Shin, Y. J., Lee, H. J., Kim, K. S., & Kim, S. (2012). A robot finger design using a dual-mode twisting mechanism to achieve high-speed motion and large grasping force. IEEE Transactions on Robotics, 28(6), 1398–1405. https://doi.org/10.1109/Tro.2012.2206870

    Article  Google Scholar 

  40. Shin, Y. J., Rew, K. H., Kim, K. S., &Kim, S. Development of anthropomorphic robot hand with dual-mode twisting actuation and electromagnetic joint locking mechanism. Proceedings of 2013 IEEE International Conference on Robotics & Automation, Karlsruhe, Germany, 2013, 2759–2764. https://doi.org/10.1109/ICRA.2013.6630957

  41. Bombara, D., Mansurov, V., Konda, R., Fowzer, S., &Zhang, J. Self-sensing for twisted string actuators using conductive supercoiled polymers. Proceedings of Smart Materials, Adaptive Structures and Intelligent Systems, Louisville, Kentucky, USA, 2019, V001T004A009. https://doi.org/10.1115/SMASIS2019-5587

  42. Bombara, D., Fowzer, S., & Zhang, J. (2020). Compliant, large-strain, and self-sensing twisted string actuators. Soft Robotics. https://doi.org/10.1089/soro.2020.0086

    Article  Google Scholar 

  43. Kirkpatrick, S. (1973). Percolation and conduction. Reviews of Modern Physics, 45(4), 574. https://doi.org/10.1103/RevModPhys.45.574

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Anhui Provincial Key Research and Development Program No. 2022f04020008, National Natural Science Foundation of China No. 62301522 and Anhui Provincial Nature Science Foundation No. 1908085MF196.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Dong or Xiaojie Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Dong, S., Ma, Y. et al. A Self-sensing TSA-actuated Anthropomorphic Robot Hand. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00491-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00491-w

Keywords

Navigation