Skip to main content
Log in

Comparing Online Performance of EMG Pattern Recognition with and Without Joint Movements

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Our previous study suggested that the subcutaneous muscle displacement caused by joint movements might alter muscle activation patterns and thus affect the classification performance. To further analyze the effect of joint movements on the online performance of Electromyography (EMG) Pattern Recognition (PR), this study assessed online classification performance with and without joint movements. EMG signals were recorded from the dominant forearm of 10 able-bodied subjects under two motion scenarios: Hand and Wrist Joints Unconstrained (HAWJU) and Constrained (HAWJC). Sixth-order autoregressive coefficients and four time-domain features were extracted from EMG signals. Linear Discriminant Analysis (LDA) models were trained to perform an online performance evaluation of the limb motions. The experimental results showed that the four online performance metrics: Motion Selection Time (MST), Motion Completion Time (MCT), Motion Completion Rate (MCR), and Online Classification Accuracy (ONCA) were 0.35 s, 1.44 s, 97.40%, and 82.61% for HAWJU and 0.37 s, 1.47 s, 89.70%, and 73.57% for HAWJC, respectively. The outcomes of this study indicated that subcutaneous muscle displacement due to joint movements has a positive effect on online classification performance. The absence of joint movements may be a physiological factor contributing to the poor online performance of the EMG-PR of transradial amputees. This study can provide a new perspective for improving the online performance of EMG-PR for transradial amputees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Li, Z. J., Wang, B. C., Sun, F. C., Yang, C. G., Xie, Q., & Zhang, W. D. (2014). Semg-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE Journal of Biomedical and Health Informatics, 18(3), 1043–1050. https://doi.org/10.1109/jbhi.2013.2286455

    Article  Google Scholar 

  2. Khushaba, R. N., Al-Timemy, A., Kodagoda, S., & Nazarpour, K. (2016). Combined influence of forearm orientation and muscular contraction on emg pattern recognition. Expert Systems with Applications, 61, 154–161. https://doi.org/10.1016/j.eswa.2016.05.031

    Article  Google Scholar 

  3. Phukpattaranont, P., Thongpanja, S., Anam, K., Al-Jumaily, A., & Limsakul, C. (2018). Evaluation of feature extraction techniques and classifiers for finger movement recognition using surface electromyography signal. Medical & Biological Engineering & Computing, 56(12), 2259–2271. https://doi.org/10.1007/s11517-018-1857-5

    Article  Google Scholar 

  4. Guo, W. C., Sheng, X. J., Liu, H. H., & Zhu, X. Y. (2017). Toward an enhanced human-machine interface for upper-limb prosthesis control with combined emg and nirs signals. IEEE Transactions on Human-Machine Systems, 47(4), 564–575. https://doi.org/10.1109/thms.2016.2641389

    Article  Google Scholar 

  5. Parajuli, N., Sreenivasan, N., Bifulco, P., Cesarelli, M., Savino, S., Niola, V., Esposito, D., Hamilton, T. J., Naik, G. R., Gunawardana, U., & Gargiulo, G. D. (2019). Real-time emg based pattern recognition control for hand prostheses: A review on existing methods, challenges and future implementation. Sensors, 19(20), 4596. https://doi.org/10.3390/s19204596

    Article  Google Scholar 

  6. Adewuyi, A. A., Hargrove, L. J., & Kuiken, T. A. (2016). Evaluating emg feature and classifier selection for application to partial-hand prosthesis control. Frontiers in Neurorobotics, 10, 15. https://doi.org/10.3389/fnbot.2016.00015

    Article  Google Scholar 

  7. Davidson, J. (2002). A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. Journal of Hand Therapy, 15(1), 62–70. https://doi.org/10.1053/hanthe.2002.v15.01562

    Article  Google Scholar 

  8. Jiang, N., Dosen, S., Mueller, K. R., & Farina, D. (2012). Myoelectric control of artificial limbs—is there a need to change focus? IEEE Signal Processing Magazine, 29(5), 147–150. https://doi.org/10.1109/msp.2012.2203480

    Article  Google Scholar 

  9. Samuel, O. W., Li, X. X., Geng, Y. J., Asogbon, M. G., Fang, P., Huang, Z., & Li, G. L. (2017). Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses. Computers in Biology and Medicine, 90, 76–87. https://doi.org/10.1016/j.compbiomed.2017.09.013

    Article  Google Scholar 

  10. Powell, M. A., Kaliki, R. R., & Thakor, N. V. (2014). User training for pattern recognition-based myoelectric prostheses: Improving phantom limb movement consistency and distinguishability. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(3), 522–532. https://doi.org/10.1109/tnsre.2013.2279737

    Article  Google Scholar 

  11. Li, G. L., Kuiken, T. A. (2009). Emg pattern recognition control of multifunctional prostheses by transradial amputees. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 6914–6917. https://doi.org/10.1109/iembs.2009.5333628.

  12. Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., & Aszmann, O. C. (2014). The extraction of neural information from the surface emg for the control of upper-limb prostheses: Emerging avenues and challenges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 797–809. https://doi.org/10.1109/tnsre.2014.2305111

    Article  Google Scholar 

  13. Farina, D., & Merletti, R. (2000). Comparison of algorithms for estimation of emg variables during voluntary isometric contractions. Journal of Electromyography and Kinesiology, 10(5), 337–349. https://doi.org/10.1016/s1050-6411(00)00025-0

    Article  Google Scholar 

  14. Yang, D. P., Yang, W., Huang, Q., & Lu, H. (2017). Classification of multiple finger motions during dynamic upper limb movements. IEEE Journal of Biomedical and Health Informatics, 21(1), 134–141. https://doi.org/10.1109/jbhi.2015.2490718

    Article  Google Scholar 

  15. Young, A. J., Hargrove, L. J., & Kuiken, T. A. (2011). The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift. IEEE Transactions on Biomedical Engineering, 58(9), 2537–2544. https://doi.org/10.1109/tbme.2011.2159216

    Article  Google Scholar 

  16. Hargrove, L., Englehart, K., & Hudgins, B. (2008). A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomedical Signal Processing and Control, 3(2), 175–180. https://doi.org/10.1016/j.bspc.2007.11.005

    Article  Google Scholar 

  17. He, J. Y., Zhang, D. G., Sheng, X. J., Li, S. C., & Zhu, X. Y. (2015). Invariant surface emg feature against varying contraction level for myoelectric control based on muscle coordination. IEEE Journal of Biomedical and Health Informatics, 19(3), 874–882. https://doi.org/10.1109/jbhi.2014.2330356

    Article  Google Scholar 

  18. Al-Timemy, A. H., Khushaba, R. N., Bugmann, G., & Escudero, J. (2016). Improving the performance against force variation of emg controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(6), 650–661. https://doi.org/10.1109/tnsre.2015.2445634

    Article  Google Scholar 

  19. Liu, J. W., Sheng, X. J., Zhang, D. G., He, J. Y., & Zhu, X. Y. (2016). Reduced daily recalibration of myoelectric prosthesis classifiers based on domain adaptation. IEEE Journal of Biomedical and Health Informatics, 20(1), 166–176. https://doi.org/10.1109/jbhi.2014.2380454

    Article  Google Scholar 

  20. Campbell, E., Phinyomark, A., Al-Timemy, A. H., Khushaba, R. N., Petri, G., Scheme, E. (2019). Differences in emg feature space between able-bodied and amputee subjects for myoelectric control. 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 33–36. https://doi.org/10.1109/ner.2019.8717161.

  21. Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A.-G.M., Elsig, S., Giatsidis, G., Bassetto, F., & Muller, H. (2016). Effect of clinical parameters on the control of myoelectric robotic prosthetic hands. Journal of Rehabilitation Research and Development, 53(3), 345–358. https://doi.org/10.1682/jrrd.2014.09.0218

    Article  Google Scholar 

  22. Pan, L. Z., Zhang, D. G., Sheng, X. J., & Zhu, X. Y. (2015). Improving myoelectric control for amputees through transcranial direct current stimulation. IEEE Transactions on Biomedical Engineering, 62(8), 1927–1936. https://doi.org/10.1109/tbme.2015.2407491

    Article  Google Scholar 

  23. Kilteni, K., Grau-Sanchez, J., De Las, V., Heras, M., Rodriguez-Fornells, A., & Slater, M. (2016). Decreased corticospinal excitability after the illusion of missing part of the arm. Frontiers in Human Neuroscience, 10, 145. https://doi.org/10.3389/fnhum.2016.00145

    Article  Google Scholar 

  24. Pan, L. Z., Liu, K., & Li, J. M. (2022). Effect of subcutaneous muscle displacement of flexor carpi radialis on surface electromyography. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1244–1251. https://doi.org/10.1109/tnsre.2022.3173406

    Article  Google Scholar 

  25. Pan, L. Z., Liu, K., Zhu, K., & Li, J. M. (2022). Comparing emg pattern recognition with and without hand and wrist movements. Journal of Bionic Engineering, 19(3), 700–708. https://doi.org/10.1007/s42235-022-00171-7

    Article  Google Scholar 

  26. Li, G. L., Schultz, A. E., & Kuiken, T. A. (2010). Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(2), 185–192. https://doi.org/10.1109/tnsre.2009.2039619

    Article  Google Scholar 

  27. Li, Z. J., Wang, B. C., Yang, C. G., Xie, Q., & Su, C.-Y. (2013). Boosting-based emg patterns classification scheme for robustness enhancement. IEEE Journal of Biomedical and Health Informatics, 17(3), 545–552. https://doi.org/10.1109/jbhi.2013.2256920

    Article  Google Scholar 

  28. Gijsberts, A., Atzori, M., Castellini, C., Mueller, H., & Caputo, B. (2014). Movement error rate for evaluation of machine learning methods for semg-based hand movement classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 735–744. https://doi.org/10.1109/tnsre.2014.2303394

    Article  Google Scholar 

  29. Yan, Y. D., Cheng, C., Guan, M. J., Zhang, J. N., & Wang, Y. (2021). The influence of the abduction joints of four fingers to grasp: Experimental and simulated verification. Applied Sciences, 11(24), 11960. https://doi.org/10.3390/app112411960

    Article  Google Scholar 

  30. Graupe, D., Cline, W. K. (1975). Functional separation of emg signals via arma identification methods for prosthesis control purposes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-5(2), 252–259. https://doi.org/10.1109/tsmc.1975.5408479.

  31. Hudgins, B., Parker, P., & Scott, R. N. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 40(1), 82–94. https://doi.org/10.1109/10.204774

    Article  Google Scholar 

  32. Englehart, K., & Hudgins, B. (2003). A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 50(7), 848–854. https://doi.org/10.1109/tbme.2003.813539

    Article  Google Scholar 

  33. Kuiken, T. A., Li, G. L., Lock, B. A., Lipschutz, R. D., Miller, L. A., Stubblefield, K. A., & Englehart, K. B. (2009). Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA, 301(6), 619–628. https://doi.org/10.1001/jama.2009.116

    Article  Google Scholar 

  34. Zhu, X. Y., Liu, J. W., Zhang, D. G., Sheng, X. J., & Jiang, N. (2017). Cascaded adaptation framework for fast calibration of myoelectric control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(3), 254–264. https://doi.org/10.1109/tnsre.2016.2562180

    Article  Google Scholar 

  35. Scheme, E., & Englehart, K. (2011). Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. Journal of Rehabilitation Research and Development, 48(6), 643–659. https://doi.org/10.1682/jrrd.2010.09.0177

    Article  Google Scholar 

  36. Nazmi, N., Rahman, M. A. A., Yamamoto, S. I., Ahmad, S. A., Zamzuri, H., & Mazlan, S. A. (2016). A review of classification techniques of emg signals during isotonic and isometric contractions. Sensors, 16(8), 1304. https://doi.org/10.3390/s16081304

    Article  Google Scholar 

  37. Wurth, S. M., & Hargrove, L. J. (2014). A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a fitts’ law style assessment procedure. Journal of Neuroengineering and Rehabilitation, 11, 91. https://doi.org/10.1186/1743-0003-11-91

    Article  Google Scholar 

  38. He, J. Y., Zhang, D. G., Jiang, N., Sheng, X. J., Farina, D., Zhu, X. Y. (2015). User adaptation in long-term, open-loop myoelectric training: Implications for emg pattern recognition in prosthesis control. Journal of Neural Engineering, 12(4), 046005. https://doi.org/10.1088/1741-2560/12/4/046005.

  39. Lynn, P. A., Bettles, N. D., Hughes, A. D., & Johnson, S. W. (1978). Influences of electrode geometry on bipolar recordings of the surface electromyogram. Medical and Biological Engineering and Computing, 16(6), 651–660. https://doi.org/10.1007/bf02442444

    Article  Google Scholar 

  40. Vieira, T. M., & Botter, A. (2021). The accurate assessment of muscle excitation requires the detection of multiple surface electromyograms. Exercise and Sport Sciences Reviews, 49(1), 23–34. https://doi.org/10.1249/jes.0000000000000240

    Article  Google Scholar 

  41. Yang, D. P., Zhao, J. D., Jiang, L., & Liu, H. (2012). Dynamic hand motion recognition based on transient and steady-state emg signals. International Journal of Humanoid Robotics, 9(1), 1250007. https://doi.org/10.1142/s0219843612500077

    Article  Google Scholar 

  42. Srinivasan, S. S., Tuckute, G., Zou, J., Gutierrez-Arango, S., Song, H., Barry, R. L., Herr, H. M. (2020). Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs. Science Translational Medicine, 12(573), eabc5926. https://doi.org/10.1126/scitranslmed.abc5926.

Download references

Acknowledgements

The authors thank all volunteers who participated in the study. This work was supported by National Natural Science Foundation of China (Grant No. 52005364, 52122501). This work was also supported by the Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education (Tianjin University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Liu, K. & Li, J. Comparing Online Performance of EMG Pattern Recognition with and Without Joint Movements. J Bionic Eng 20, 2135–2146 (2023). https://doi.org/10.1007/s42235-023-00376-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00376-4

Keywords

Navigation