Skip to main content
Log in

An Untethered Miniature Soft Jumping Robot Inspired by Quadrupeds

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In recent years, designing a soft robot that can jump continuously and quickly explore in a narrow space has been a hot research topic. With the continuous efforts of researchers, many types of actuators have been developed and successfully employed to actuate the rapid locomotion of soft robots. Although these mechanisms have enabled soft robots with excellent movement capabilities, they largely rely on external energy supply cables, which greatly limits their applications. Therefore, it is still a big challenge to realize the unconstrained movement of the soft robot and the flexible adjustment of the movement direction in a narrow space. Here, a wireless magnetically controlled soft jumping robot with single-leg is proposed, which can achieve continuous and rapid jumping motion. What's more interesting is that by changing the frequency and waveform of the control signal, this soft robot can easily switch between forward and backward motions. This motion direction switching function enables the magnetically controlled soft robot to return to the initial position without adjusting the direction when it completes the operation in a narrow pipe or takes the wrong path, which greatly improves the motion efficiency of the soft jumping robot and broadens its application field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dong, H. Y., Wan, Y., Yan, K., & Zhang, X. J. (2021). Study on the single leg’s passive bouncing characteristics of legged robots with the flexible joints featured by active and passive variable stiffness. Journal of Machine Design, 38(3), 58–65. https://doi.org/10.13841/j.cnki.jxsj.2021.03.009

    Article  Google Scholar 

  2. Shui, L. Q., Zhu, L. L., Yang, Z., Liu, Y. L., & Chen, X. (2017). Energy efficiency of mobile soft robots. Soft Matter, 13(44), 8223–8233. https://doi.org/10.1039/c7sm01617d

    Article  Google Scholar 

  3. Sugiyama, Y., & Hirai, S. (2006). Crawling and jumping by a deformable robot. The International Journal of Robotics Research, 25(5–6), 603–620. https://doi.org/10.1177/0278364906065386

    Article  Google Scholar 

  4. Bartlett, N. W., Tolley, M. T., Overvelde, T. B., Weaver, J. C., Mosadegh, B., Bertoldi, K., Whitesides, G. M., & Wood, R. J. (2015). A 3D-printed, functionally graded soft robot powered by combustion. Science, 349(6244), 161–165. https://doi.org/10.1126/science.aab0129

    Article  Google Scholar 

  5. Driessen, J. J. M., & Orsolino, R. (2021). Improving robustness of legged robots against mechanical shock using impulsive dynamics. Frontiers in Mechanical Engineering-Switzerland, 6, 601922. https://doi.org/10.3389/fmech.2020.601922

    Article  Google Scholar 

  6. Li, T. F., Zhou, L. L., Li, Y. B., Chai, H., & Yang, K. (2020). An energy efficient motion controller based on SLCP for the electrically actuated quadruped robot. Journal of Bionic Engineering, 17(2), 290–302. https://doi.org/10.1007/s42235-020-0023-6

    Article  Google Scholar 

  7. Zhou, L. L., Li, T. F., Liu, Z. Y., & Li, Y. B. (2021). An efficient gait-generating method for electrical quadruped robot based on humanoid power planning ppproach. Journal of Bionic Engineering, 18(6), 1463–1474. https://doi.org/10.1007/s42235-021-00089-6

    Article  Google Scholar 

  8. Koh, J. S., Yang, E., Jung, G. P., Jung, S.-P., Son, J. H., Lee, S.-I., Jablonski, P. G., Wood, R. J., Kim, H.-Y., & Cho, K.-J. (2015). Jumping on water: Surface tension–dominated jumping of water striders and robotic insects. Science, 349(6247), 517. https://doi.org/10.1126/science.aab1637

    Article  Google Scholar 

  9. Noh, M., Kim, S. W., An, S. M., Koh, J. S., & Cho, K. J. (2012). Flea-inspired catapult mechanism for miniature jumping robots. IEEE Transactions on Robotics, 28(5), 1007–1018. https://doi.org/10.1109/tro.2012.2198510

    Article  Google Scholar 

  10. Gorissen, B., Melancon, D., Vasios, N., Torbati, M., & Bertoldi, K. (2020). Inflatable soft jumper inspired by shell snapping. Science Robotics, 5, eabb1967.

    Article  Google Scholar 

  11. Tang, Y. C., Chi, Y. D., Sun, J. F., Huang, T.-H., Maghsoudi, O. H., Spence, A., Zhao, J. G., Su, H., & Yin, J. (2020). Leveraging elastic instabilities for amplified performance: spine-inspired high-speed and high-force soft robots. Science, 6(19), eaaz6912. https://doi.org/10.1126/sciadv.aaz6912

    Article  Google Scholar 

  12. Ahn, C., Liang, X. D., & Cai, S. Q. (2019). Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot. Advanced Materials Technologies. https://doi.org/10.1002/admt.201900185

    Article  Google Scholar 

  13. Jeon, J., Choi, J.-C., Lee, H., Cho, W., Lee, K., Kim, J. G., Lee, J.-W., Joo, K.-I., Cho, M., Kim, H.-R., & Wie, J. J. (2021). Continuous and programmable photomechanical jumping of polymer monoliths. Materials Today, 49, 97–106. https://doi.org/10.1016/j.mattod.2021.04.014

    Article  Google Scholar 

  14. Hu, Y., Liu, J. Q., Chang, L. F., Yang, L. L., Xu, A. F., Qi, K., Lu, P., Wu, G., Chen, W., & Wu, Y. C. (2017). Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite. Advanced Functional Materials, 27(44), 1704388. https://doi.org/10.1002/adfm.201704388

    Article  Google Scholar 

  15. Liang, J. M., Wu, Y. C., Yim, J. K., Chen, H. M., Miao, Z. C., Liu, H. X., Liu, Y., Liu, Y. X., Wang, D. K., Qiu, W. Y., Shao, Z. C., Zhang, M., Wang, X. H., Zhong, J. W., & Lin, L. W. (2021). Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Science Robotics, 6(55), eabe7906. https://doi.org/10.1126/scirobotics.abe7906

    Article  Google Scholar 

  16. Park, T., & Cha, Y. (2019). Soft mobile robot inspired by animal-like running motion. Scientific Reports, 9(1), 14700. https://doi.org/10.1038/s41598-019-51308-4

    Article  Google Scholar 

  17. Wu, Y. C., Yim, J. K., Liang, J. M., Shao, Z. C., Qi, M. J., Zhong, J. W., Luo, Z. H., Yan, X. J., Zhang, M., Wang, X. H., Fearing, R. S., Full, R. J., & Lin, L. W. (2019). Insect-scale fast moving and ultrarobust soft robot. Science Robotics, 4(32), eaax1594. https://doi.org/10.1126/scirobotics.aax1594

    Article  Google Scholar 

  18. Zhao, J. W., Zhang, J. M., McCoul, D., Hao, Z. G., Wang, S., Wang, X. B., Huang, B., & Sun, L. N. (2019). Soft and fast hopping-running robot with speed of six times its body length Per Second. Soft Robotics, 6(6), 713–721. https://doi.org/10.1089/soro.2018.0098

    Article  Google Scholar 

  19. Chen, R., Yuan, Z., Guo, J. L., Bai, L., Zhu, X. Y., Liu, F. Q., Pu, H. Y., Xin, L. M., Peng, Y., Luo, J., Wen, L., & Sun, Y. (2021). Legless soft robots capable of rapid, continuous, and steered jumping. Nature Communications, 12(1), 7028. https://doi.org/10.1038/s41467-021-27265-w

    Article  Google Scholar 

  20. Mitchell, S. K., Wang, X. R., Acome, E., Martin, T., Ly, K., Kellaris, N., Venkata, V. G., & Keplinger, C. (2019). An easy-to-implement toolkit to create versatile and high-performance HASEL actuators for untethered soft robots. Advanced Science, 6(14), 1900178. https://doi.org/10.1002/advs.201900178

    Article  Google Scholar 

  21. Wang, X., Mao, G. Y., Ge, J., Drack, M., CañónBermúdez, G. S., Wirthl, D., Illing, R., Kosub, T., Bischoff, L., Wang, C. G., Fassbender, J., Kaltenbrunner, M., & Makarov, D. (2020). Untethered and ultrafast soft-bodied robots. Communications Materials, 1(1), 1–10. https://doi.org/10.1038/s43246-020-00067-1

    Article  Google Scholar 

  22. Wang, X. X., Zhang, Q., Liu, P., Zhu, X., Wu, C., Wang, J. Y., Liu, C. X., Wang, J. F., Gao, Y., Song, A. G., & Huang, Y. (2021). An ultrafast response and precisely controllable soft electromagnet actuator based on Ecoflex rubber film filled with neodymium-iron-boron. Journal of Micromechanics and Microengineering. https://doi.org/10.1088/1361-6439/abd222

    Article  Google Scholar 

  23. Xu, T. Q., Zhang, J. C., Salehizadeh, M., Onaizah, O., & Diller, E. (2019). Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Science Robotics, 4(29), eaav4494.

    Article  Google Scholar 

  24. Ijaz, S., Li, H., Hoang, M. C., Kim, C.-S., Bang, D., Choi, E., & Park, J.-O. (2020). Magnetically actuated miniature walking soft robot based on chained magnetic microparticles-embedded elastomer. Sensors and Actuators A: Physical., 301, 111707. https://doi.org/10.1016/j.sna.2019.111707

    Article  Google Scholar 

  25. Lee, H.-S., Jeon, Y.-U., Lee, I.-S., Jeong, J.-Y., Hoang, M. C., Hong, A., Choi, E., Park, J.-O., & Kim, C.-S. (2020). Wireless walking paper robot driven by magnetic polymer actuator. Actuators. https://doi.org/10.3390/act9040109

    Article  Google Scholar 

  26. Niu, H. Q., Feng, R. Y., Xie, Y. W., Jiang, B. W., Sheng, Y. Z., Yu, Y., Baoyin, H. X., & Zeng, X. Y. (2020). MagWorm: A biomimetic magnet embedded worm-like soft robot. Soft Robotics, 8(5), 507–518. https://doi.org/10.1089/soro.2019.0167

    Article  Google Scholar 

  27. Dai, Y. G., Liang, S. Z., Chen, Y. Y., Feng, Y. M., Chen, D. X., Song, B., Bai, X., Zhang, D. Y., Feng, L., & Arai, F. (2020). Untethered octopus-inspired millirobot actuated by regular tetrahedron arranged magnetic field. Advanced Intelligent Systems, 2(5), 2070053. https://doi.org/10.1002/aisy.201900148

    Article  Google Scholar 

  28. Manamanchaiyaporn, L., Xu, T. T., & Wu, X. Y. (2020). Magnetic soft robot with the triangular head-tail morphology inspired by lateral undulation. IEEE/ASME Transactions on Mechatronics, 25(6), 2688–2699. https://doi.org/10.1109/tmech.2020.2988718

    Article  Google Scholar 

  29. Du, X. M., Cui, H. Q., Xu, T. T., Huang, C. Y., Wang, Y. L., Zhao, Q. L., Xu, Y. S., & Wu, X. Y. (2019). Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots. Advanced Functional Materials, 30(10), 1909202. https://doi.org/10.1002/adfm.201909202

    Article  Google Scholar 

  30. Jeon, G. H., & Park, Y. J. (2021). Soft jumping robot using soft morphing and the yield point of magnetic force. Applied Sciences, 11(13), 5891. https://doi.org/10.3390/app11135891

    Article  Google Scholar 

  31. Hu, W. Q., Lum, G. Z., Mastrangeli, M., & Metin, S. (2018). Small-scale soft-bodied robot with multimodal locomotion. Nature, 554, 81–85. https://doi.org/10.1038/nature25443

    Article  Google Scholar 

  32. Yan, D., Pezzulla, M., Cruveiller, L., Abbasi, A., & Reis, P. M. (2021). Magneto-active elastic shells with tunable buckling strength. Nature Communications, 12(1), 2831. https://doi.org/10.1038/s41467-021-22776-y

    Article  Google Scholar 

  33. Bira, N., Dhagat, P., & Davidson, J. R. (2020). A review of magnetic elastomers and their role in soft robotics. Frontiers in Robotics and AI, 7, 7588391. https://doi.org/10.3389/frobt.2020.588391

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the financial support from the National Natural Science Foundation of China (No.61803088), Joint fund of the Science & Technology Department of Liaoning Province and the State Key Laboratory of Robotics, China (Grant No. 2021-KF-22-13) and Natural Science Foundation of Fujian Province, China (No. 2022J01543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanan Wei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 989 KB)

Supplementary file2 (MP4 4005 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, T., Wei, F., Zhai, Z. et al. An Untethered Miniature Soft Jumping Robot Inspired by Quadrupeds. J Bionic Eng 20, 1467–1480 (2023). https://doi.org/10.1007/s42235-023-00342-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00342-0

Keywords

Navigation