Skip to main content
Log in

Fabrication and Characterization of Banana Pseudostem Fibre Reinforced Epoxy Hybrid Composite Using Al2O3 as Filler

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Natural fibre-reinforced composites are now becoming incredibly common in various products because of their comparable qualities to conventional materials. Due to its availability, superior mechanical qualities, and low cost, banana pseudostem is extensively used in various applications requiring natural fibres. This study investigates the physical and mechanical properties of epoxy composites reinforced with banana pseudostem fibres that contain Al2O3 particulate. In order to produce composites with fibre and filler loadings, manual hand layup was used. Fibre and filler loading effects on composite properties were studied in experiments. The results of the investigations demonstrate that proportion of Al2O3 in composites significantly influences their mechanical and physical properties. Additionally, the composite with a fibre content of 30% shows improved mechanical proportions and hardness. Thermogravimetric analysis was used to study the composite's thermal behaviour. Composites are more thermally stable than raw epoxy. Fourier Transform Infrared Spectroscopy and Scanning electron microscopy analyses were used to characterize the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Benedetto, R. M. D., Gelfuso, M. V., & Thomazini, D. (2015). Influence of UV radiation on the physical-chemical and mechanical properties of banana fiber. Materials Research, 18, 265–272. https://doi.org/10.1590/1516-1439.371414.

    Article  Google Scholar 

  2. Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, 112–121. https://doi.org/10.1016/j.compositesb.2017.09.008.

    Article  Google Scholar 

  3. Shinoj, S., Visvanathan, R., Panigrahi, S., & Kochubabu, M. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), 7–22. https://doi.org/10.1016/j.indcrop.2010.09.009.

    Article  Google Scholar 

  4. Mantia, F., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science Manufacturing, 42, 579–588. https://doi.org/10.1016/j.compositesa.2011.01.017.

    Article  Google Scholar 

  5. Mukherjee, T., & Kao, N. (2011). PLA based biopolymer reinforced with natural fibre: A review. Journal of Polymers and the Environment, 19(3), 714–725. https://doi.org/10.1007/s10924-011-0320-6.

    Article  Google Scholar 

  6. Shah, A. U. R., Prabhakar, M. N., & Song, J. I. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites—a review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 247–262. https://doi.org/10.1007/s40684-017-0030-1.

    Article  Google Scholar 

  7. Wang, X. H., & Wang, D. Y. (2017). Fire-retardant polylactic acid-based materials: Preparation, properties, and mechanism. Novel fire retardant polymers and composite materials (pp. 93–116). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100136-3.00004-2.

    Chapter  Google Scholar 

  8. Balaji, A., Purushothaman, R., Udhayasankar, R., Vijayaraj, S., & Karthikeyan, B. (2020). Study on mechanical, thermal and morphological properties of banana fiber-reinforced epoxy composites. Journal of Bio-and Tribo-Corrosion, 6(2), 1–10. https://doi.org/10.1007/s40735-020-00357-8.

    Article  Google Scholar 

  9. Karthick, R., Adithya, K., Hariharaprasath, C., & Abhishek, V. (2018). Evaluation of mechanical behavior of banana fibre reinforced hybrid epoxy composites. Materials Today: Proceedings, 5(5), 12814–12820. https://doi.org/10.1016/j.matpr.2018.02.265.

    Article  Google Scholar 

  10. Sun, Z. H., Zhang, L., Liang, D., Xiao, W., & Lin, J. (2017). Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. International Journal of Polymer Science. https://doi.org/10.1155/2017/2178329.

    Article  Google Scholar 

  11. D’souza, K. P., & D’souza, L. (2017). Processing and characterization of banana fiber reinforced polymer nano composite. Nanoscience and Nanotechnology, 7(2), 34–37. https://doi.org/10.5923/j.nn.20170702.02.

    Article  Google Scholar 

  12. Militello, C., Bongiorno, F., Epasto, G., & Zuccarello, B. (2020). Low-velocity impact behaviour of green epoxy biocomposite laminates reinforced by sisal fibers. Composite Structures, 253, 112744. https://doi.org/10.1016/j.compstruct.2020.112744.

    Article  Google Scholar 

  13. Patil, A. Y., Hrishikesh, N. U., Basavaraj, G. D., Chalageri, G. R., & Kodancha, K. G. (2018). Influence of bio-degradable natural fiber embedded in polymer matrix. Materials Today: Proceedings, 5(2), 7532–7540. https://doi.org/10.1016/j.matpr.2017.11.425.

    Article  Google Scholar 

  14. Kostag, M., Jedvert, K., & El Seoud, O. A. (2021). Engineering of sustainable biomaterial composites from cellulose and silk fibroin: Fundamentals and applications. International Journal of Biological Macromolecules, 167, 687–718. https://doi.org/10.1016/j.ijbiomac.2020.11.151.

    Article  Google Scholar 

  15. Patil, A. Y., Banapurmath, N. R., & Yaradoddi, J. S. (2019). Experimental and simulation studies on waste vegetable peels as bio-composite fillers for light duty applications. Arabian Journal of Science and Engineering, 44, 7895–7907. https://doi.org/10.1007/s13369-019-03951-2.

    Article  Google Scholar 

  16. Bhoopathi, R., Ramesh, M., & Deepa, C. (2014). Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites. Procedia Engineering, 97, 2032–2041.

    Article  Google Scholar 

  17. Kamran, U., & Park, S.-J. (2020). MnO2-decorated biochar composites of coconut shell and rice husk: An efficient lithium ions adsorption-desorption performance in aqueous media. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127500.

    Article  Google Scholar 

  18. Kamran, U., & Park, S. J. (2022). Hybrid biochar supported transition metal doped MnO2 composites: Efficient contenders for lithium adsorption and recovery from aqueous solutions. Desalination, 522, 115387. https://doi.org/10.1016/j.desal.2021.115387.

    Article  Google Scholar 

  19. Kamran, U., Bhatti, H. N., Noreen, S., Tahir, M. A., & Park, S. J. (2022). Chemically modified sugarcane bagasse-based biocomposites for efficient removal of acid red 1 dye: Kinetics, isotherms, thermodynamics, and desorption studies. Chemosphere, 291, 132796. https://doi.org/10.1016/j.chemosphere.2021.132796.

    Article  Google Scholar 

  20. Zafar, L., Khan, A., Kamran, U., Park, S. J., & Bhatti, H. N. (2022). Eucalyptus (camaldulensis) bark-based composites for efficient Basic Blue 41 dye biosorption from aqueous stream: Kinetics, isothermal, and thermodynamic studies. Surfaces and Interfaces, 31, 101897. https://doi.org/10.1016/j.surfin.2022.101897.

    Article  Google Scholar 

  21. Kamran, U., Rhee, K. Y., Lee, S. Y., & Park, S. J. (2022). Solvent-free conversion of cucumber peels to N-doped microporous carbons for efficient CO2 capture performance. Journal of Cleaner Production, 369, 133367. https://doi.org/10.1016/j.jclepro.2022.133367.

    Article  Google Scholar 

  22. Niyasom, S., & Tangboriboon, N. (2021). Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction. Construction and Building Materials, 283, 122627. https://doi.org/10.1016/j.conbuildmat.2021.122627.

    Article  Google Scholar 

  23. Foroutan, R., Peighambardoust, S. J., Hosseini, S. S., Akbari, A., & Ramavandi, B. (2021). Hydroxyapatite biomaterial production from chicken (femur and beak) and fishbone waste through a chemical less method for Cd2+ removal from shipbuilding wastewater. Journal of Hazardous Materials, 413, 125428. https://doi.org/10.1016/j.jhazmat.2021.125428.

    Article  Google Scholar 

  24. Ramesh, M., Atreya, T. S. A., Aswin, U. S., Eashwar, H., & Deepa, C. (2014). Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Engineering, 97, 563–572. https://doi.org/10.1016/j.proeng.2014.12.284.

    Article  Google Scholar 

  25. Ramesh, M., Logesh, R., Manikandan, M., Kumar, N. S., & Pratap, D. V. (2017). Mechanical and water intake properties of banana-carbon hybrid fiber reinforced polymer composites. Materials Research, 20, 365–376. https://doi.org/10.1590/1980-5373-MR-2016-0760.

    Article  Google Scholar 

  26. Mostafa, N. H., Ismarrubie, Z. N., Sapuan, S. M., & Sultan, M. T. H. (2017). Fibre prestressed composites: Theoretical and numerical modelling of unidirectional and plain-weave fibre reinforcement forms. Composite Structures, 159, 410–423. https://doi.org/10.1016/j.compstruct.2016.09.090.

    Article  Google Scholar 

  27. Mostafa, N. H., Ismarrubie, Z. N., Sapuan, S. M., & Sultan, M. T. H. (2016). Effect of equibiaxially fabric prestressing on the tensile performance of woven E-glass/polyester reinforced composites. Journal of Reinforced Plastics and Composites, 35(14), 1093–1103. https://doi.org/10.1177/0731684416638553.

    Article  Google Scholar 

  28. Nguyen, T. A., Nguyen, Q. T., Nguyen, X. C., & Nguyen, V. H. (2019). Study on fire resistance ability and mechanical properties of composites based on Epikote 240 epoxy resin and thermoelectric fly ash: an eco-friendly additive. Journal of Chemistry. https://doi.org/10.1155/2019/2635231.

    Article  Google Scholar 

  29. Nguyen, T. A. (2020). Effects of the amount of fly ash modified by stearic acid compound on mechanical properties, flame retardant ability, and structure of the composites. International Journal of Chemical Engineering. https://doi.org/10.1155/2020/2079189.

    Article  Google Scholar 

  30. Premnath, A. A. (2022). Mechanical and physical properties of pineapple leaf and sun hemp fibre reinforced hybrid natural composite fabricated by compression moulding method. Journal of Bionic Engineering, 19(1), 257–267. https://doi.org/10.1007/s42235-021-00120-w.

    Article  Google Scholar 

  31. Nguyen, T. A., Pham, T. M. H., Dang, T. H., Do, T. H., & Nguyen, Q. T. (2020). Study on mechanical properties and fire resistance of epoxy nanocomposite reinforced with environmentally friendly additive: nanoclay I. 30E. Journal of Chemistry. https://doi.org/10.1155/2020/3460645.

    Article  Google Scholar 

  32. Nguyen, T. A. (2021). Study on the synergies of nanoclay and MWCNTs to the flame retardant and mechanical properties of epoxy nanocomposites. Journal of Nanomaterials. https://doi.org/10.1155/2021/5536676.

    Article  Google Scholar 

  33. Nguyen, T. A., Nguyen, Q. T., & Bach, T. P. (2019). Mechanical properties and flame retardancy of epoxy resin/nanoclay/multiwalled carbon nanotube nanocomposites. Journal of Chemistry. https://doi.org/10.1155/2019/3105205.

    Article  Google Scholar 

  34. Nguyen, T. A. (2020). Mechanical and flame-retardant properties of nanocomposite based on epoxy resin combined with epoxidized linseed oil, which has the presence of nanoclay and MWCNTs. Journal of Chemistry. https://doi.org/10.1155/2020/2353827.

    Article  Google Scholar 

  35. Nguyen, T. A., & Nguyen, Q. T. (2020). Study on synergies of fly ash with multiwall carbon nanotubes in manufacturing fire retardant epoxy nanocomposite. Journal of Chemistry. https://doi.org/10.1155/2020/6062128.

    Article  Google Scholar 

  36. Zhang, Y., Fan, Y., Kamran, U., & Park, S. J. (2022). Improved thermal conductivity and mechanical property of mercapto group-activated boron nitride/elastomer composites for thermal management. Composites Part A: Applied Science and Manufacturing, 156, 106869. https://doi.org/10.1016/j.compositesa.2022.106869.

    Article  Google Scholar 

  37. Kamran, U., Heo, Y. J., Lee, J. W., & Park, S. J. (2019). Functionalized carbon materials for electronic devices: A review. Micromachines, 10(4), 234. https://doi.org/10.3390/mi10040234.

    Article  Google Scholar 

  38. Nguyen, T. A., & Pham, T. M. H. (2020). Study on the properties of epoxy composites using fly ash as an additive in the presence of nanoclay: mechanical properties, flame retardants, and dielectric properties. Journal of Chemistry. https://doi.org/10.1155/2020/8854515.

    Article  Google Scholar 

  39. Siddika, S., Mansura, F., & Hasan, M. (2013). Physico-mechanical properties of jute-coir fiber reinforced hybrid polypropylene composites. Engineering and Technology, 73, 1145–1149.

    Google Scholar 

  40. Miah, M. J., Khan, M. A., & Khan, R. A. (2011). Fabrication and characterization of jute fiber reinforced low density polyethylene-based composites: Effects of chemical treatment. Journal of Scientific Research, 3(2), 249–259. https://doi.org/10.3329/jsr.v3i2.6763.

    Article  Google Scholar 

  41. Vivek, S., Kanthavel, K., Torris, A., & Kavimani, V. (2020). Effect of bio-filler on hybrid sisal-Banana-Kenaf-flax based epoxy composites: A statistical correlation on flexural strength. Journal of Bionic Engineering, 17(6), 1263–1271. https://doi.org/10.1007/s42235-020-0083-7.

    Article  Google Scholar 

  42. Gupta, A., Kumar, A., Patnaik, A., & Biswas, S. (2011). Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites. International Journal of Polymer Science. https://doi.org/10.1155/2011/592906.

    Article  Google Scholar 

  43. Oksman, K. (2000). Mechanical properties of natural fibre mat reinforced thermoplastic. Applied Composite Materials, 7(5), 403–414.

    Article  Google Scholar 

  44. Selamat, M. E., Sulaiman, O., Hashim, R., Hiziroglu, S., Nadhari, W. N. A. W., Sulaiman, N. S., & Razali, M. Z. (2014). Measurement of some particleboard properties bonded with modified carboxymethyl starch of oil palm trunk. Measurement, 53, 251–259. https://doi.org/10.1016/j.measurement.2014.04.0010263-2241/2014.

    Article  Google Scholar 

  45. Zhang, J. H., Wang, X., Zhang, S., Gao, Q., & Li, J. (2013). Effects of melamine addition stage on the performance and curing behavior of melamine-urea-formaldehyde (MUF) resin. Bio Resources, 8(4), 5500–5514.

    Google Scholar 

  46. Gürses, A., Karagoz, S., Mindivan, F., Güneş, K., Doğar, Ç., & Aktürk, S. (2014). Preparation and characterization of urea/formaldehyde/rosa canina sp. seeds composites. Acta Physica Polonica, A., 125(2), 368–373. https://doi.org/10.12693/APhysPolA.125.368.

    Article  Google Scholar 

  47. Sarifuddin, N., Ismail, H., & Ahmad, Z. (2013). The effect of kenaf core fibre loading on properties of low-density polyethylene/thermoplastic sago starch/kenaf core fiber composites. Journal of Physical Science, 24(2), 97–115.

    Google Scholar 

  48. Pushpamalar, V., Langford, S. J., Ahmad, M., & Lim, Y. Y. (2006). Optimization of reaction conditions for carboxymethyl cellulose from sago waste. Carbohydrate Polymers, 64(2), 312–318. https://doi.org/10.1016/j.carbpol.2005.12.003.

    Article  Google Scholar 

  49. Sim, S. F., Mohamed, M., Lu, N. A. L. M. I., Sarman, N. S. P., & Samsudin, S. N. S. (2012). Computer-assisted analysis of fourier transform infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass. Bio Resources, 7(4), 5367–5380. https://doi.org/10.15376/biores.7.4.5367-5380.

    Article  Google Scholar 

  50. Zuraida, A., Anuar, H., & Yusof, Y. (2011). The study of biodegradable thermo-plastics sago starch. Key engineering materials (pp. 397–402). Trans Tech Publications Limited. https://doi.org/10.4028/www.scientific.net/KEM.471-472.397.

    Chapter  Google Scholar 

  51. Singh, V. K., Gope, P. C., Sakshi, C., & Singh, B. D. (2012). Mechanical behavior of banana fiber-based hybrid bio composites. Journal of Material Environment Science, 3(1), 185–194. ISSN: 2028-2508.

    Google Scholar 

Download references

Acknowledgements

This work is done in conjunction with members of the Laboratory for Advanced Research in Polymeric Materials (LARPM), CIPET, Bhubaneswar, and the Faculty of Materials Science Engineering, Department of Mechanical Engineering, National Institute of Technology, Agartala. We sincerely appreciate all of the writers' contributions to the field of composite materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, A., Kumar, S., Bhargava, M. et al. Fabrication and Characterization of Banana Pseudostem Fibre Reinforced Epoxy Hybrid Composite Using Al2O3 as Filler. J Bionic Eng 20, 1737–1746 (2023). https://doi.org/10.1007/s42235-023-00331-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00331-3

Keywords

Navigation