Skip to main content
Log in

Evaporation Characteristics and Morphological Evolutions of Fuel Droplets After Hitting Different Wettability Surfaces

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

To solve the wall-wetting problem in internal combustion engines, the physical and chemical etching methods are used to prepare different wettability surfaces with various microstructures. The evaporation characteristics and morphological evolution processes of diesel and n-butanol droplets after hitting the various surfaces are investigated. The results show that the surface microstructures increase the surface roughness (Ra), enhancing the oleophilic property of the oleophilic surfaces. Compared with n-butanol droplets, the same surface shows stronger oleophobicity to diesel droplets. When a droplet hits an oleophilic property surface with a lower temperature, the stronger the oleophilicity, the shorter the evaporation time. For oleophilic surfaces, larger Ra leads to a higher Leidenfrost temperature (\(T_{{{\text{Leid}}}}\)). The low \(T_{{{\text{Leid}}}}\) caused by enhanced oleophobicity, dense microstructures and increased convex dome height facilitates droplet rebound and promotes the evaporation of the wall-impinging droplets into the cylinder. The evaporation rate of the droplets is not only related to the characteristics of the solid surfaces and the fuel droplets but also affected by the heat transfer rate to the droplets in different boiling regimes. The spreading diameter of a droplet on an oleophobic surface varies significantly less with time than that on an oleophilic surface under the same surface temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ko, S. H., Chung, J., Hotz, N., Nam, K. H., & Grigoropoulos, C. P. (2010). Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. Journal of Micromechanics and Microengineering, 20(12), 7. https://doi.org/10.1088/0960-1317/20/12/125010

    Article  Google Scholar 

  2. Bergeron, V., Bonn, D., Martin, J. Y., & Vovelle, L. (2000). Controlling droplet deposition with polymer additives. Nature, 405(6788), 772–775. https://doi.org/10.1038/35015525

    Article  Google Scholar 

  3. Bendu, H., & Murugan, S. (2014). Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines. Renewable and Sustainable Energy Reviews, 38, 732–746. https://doi.org/10.1016/j.rser.2014.07.019

    Article  Google Scholar 

  4. Polat, S. (2020). An experimental investigation on combustion, performance and ringing operation characteristics of a low compression ratio early direct injection HCCI engine with ethanol fuel blends. Fuel. https://doi.org/10.1016/j.fuel.2020.118092

    Article  Google Scholar 

  5. Moreira, A. L. N., Moita, A. S., & Panão, M. R. (2010). Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Progress in Energy and Combustion Science, 36(5), 554–580. https://doi.org/10.1016/j.pecs.2010.01.002

    Article  Google Scholar 

  6. Duan, X. B., Lai, M. C., Jansons, M., Guo, G. M., & Liu, J. P. (2021). A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel. https://doi.org/10.1016/j.fuel.2020.119142

    Article  Google Scholar 

  7. Krishnamoorthi, M., Malayalamurthi, R., He, Z. X., & Kandasamy, S. (2019). A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renewable & Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2019.109404

    Article  Google Scholar 

  8. Hawi, M., Kosaka, H., Sato, S., Nagasawa, T., Elwardany, A., & Ahmed, M. (2019). Effect of injection pressure and ambient density on spray characteristics of diesel and biodiesel surrogate fuels. Fuel. https://doi.org/10.1016/j.fuel.2019.115674

    Article  Google Scholar 

  9. Kiplimo, R., Tomita, E., Kawahara, N., & Yokobe, S. (2012). Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering, 37, 165–175. https://doi.org/10.1016/j.applthermaleng.2011.11.011

    Article  Google Scholar 

  10. Li, X. R., Sun, Z. Y., Du, W., & Wei, R. (2010). Research and development of double swirl combustion system for a DI diesel engine. Combustion Science and Technology, 182(8), 1029–1049. https://doi.org/10.1080/00102200903544271

    Article  Google Scholar 

  11. Jin, C., Yao, M. F., Liu, H. F., Lee, C. F. F., & Ji, J. (2011). Progress in the production and application of n-butanol as a biofuel. Renewable and Sustainable Energy Reviews, 15(8), 4080–4106. https://doi.org/10.1016/j.rser.2011.06.001

    Article  Google Scholar 

  12. Misyura, S. Y., Kuznetsov, G. V., Feoktistov, D. V., Volkov, R. S., Morozov, V. S., & Orlova, E. G. (2019). The influence of the surface microtexture on wettability properties and drop evaporation. Surface and Coatings Technology, 375, 458–467. https://doi.org/10.1016/j.surfcoat.2019.07.058

    Article  Google Scholar 

  13. Patil, N. D., Bhardwaj, R., & Sharma, A. (2016). Droplet impact dynamics on micropillared hydrophobic surfaces. Experimental Thermal and Fluid Science, 74, 195–206. https://doi.org/10.1016/j.expthermflusci.2015.12.006

    Article  Google Scholar 

  14. Ma, C. B., Kang, M., Wang, X. S., Li, N. H., Hong, W., Li, C. Y., & Yang, A. (2019). Fabrication of regular hierarchical structures with superhydrophobic and high adhesion performances on a 304 stainless steel surface via picosecond laser. Journal of Bionic Engineering, 16(5), 806–813. https://doi.org/10.1007/s42235-019-0098-0

    Article  Google Scholar 

  15. Taghvaei, E., Moosavi, A., Nouri-Borujerdi, A., Daeian, M. A., & Vafaeinejad, S. (2017). Superhydrophobic surfaces with a dual-layer micro- and nanoparticle coating for drag reduction. Energy, 125, 1–10. https://doi.org/10.1016/j.energy.2017.02.117

    Article  Google Scholar 

  16. Chen, J. T., Ahmad, S., Cai, J. J., Liu, H. Q., Lau, K. T., & Zhao, J. Y. (2021). Latest progress on nanotechnology aided boiling heat transfer enhancement: A review. Energy. https://doi.org/10.1016/j.energy.2020.119114

    Article  Google Scholar 

  17. Wang, G. Y., Guo, Z. G., & Liu, W. M. (2014). Interfacial effects of superhydrophobic plant surfaces: A review. Journal of Bionic Engineering, 11(3), 325–345. https://doi.org/10.1016/S1672-6529(14)60047-0

    Article  Google Scholar 

  18. Saleh, T. A., & Baig, N. (2019). Efficient chemical etching procedure for the generation of superhydrophobic surfaces for separation of oil from water. Progress in Organic Coatings, 133, 27–32. https://doi.org/10.1016/j.porgcoat.2019.03.049

    Article  Google Scholar 

  19. Kim, J. H., Mirzaei, A., Kim, H. W., & Kim, S. S. (2018). Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching. Applied Surface Science, 439, 598–604. https://doi.org/10.1016/j.apsusc.2017.12.211

    Article  Google Scholar 

  20. Pereira, P. M. M., Moita, A. S., Monteiro, G. A., & Prazeres, D. M. F. (2014). Characterization of the topography and wettability of English weed leaves and biomimetic replicas. Journal of Bionic Engineering, 11(3), 346–359. https://doi.org/10.1016/S1672-6529(14)60048-2

    Article  Google Scholar 

  21. Guo, L., Gao, Y. H., Cai, N. N., Li, D. G., Yan, Y. Y., & Sun, W. C. (2020). Morphological development of fuel droplets after impacting biomimetic structured surfaces with different temperatures. Journal of Bionic Engineering, 17(4), 822–834. https://doi.org/10.1007/s42235-020-0050-3

    Article  Google Scholar 

  22. Wong, S. C., & Lin, Y. C. (2011). Effect of copper surface wettability on the evaporation performance: Tests in a flat-plate heat pipe with visualization. International Journal of Heat and Mass Transfer, 54(17–18), 3921–3926. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.033

    Article  Google Scholar 

  23. Tran, T., Staat, H. J. J., Susarrey-Arce, A., Foertsch, T. C., van Houselt, A., Gardeniers, H., Prosperetti, A., Lohse, D., & Sun, C. (2013). Droplet impact on superheated micro-structured surfaces. Soft Matter, 9(12), 3272–3282. https://doi.org/10.1039/c3sm27643k

    Article  Google Scholar 

  24. Shen, J., Graber, C., Liburdy, J., Pence, D., & Narayanan, V. (2010). Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces. Experimental Thermal and Fluid Science, 34(4), 496–503. https://doi.org/10.1016/j.expthermflusci.2009.02.003

    Article  Google Scholar 

  25. Clavijo, C. E., Crockett, J., & Maynes, D. (2017). Hydrodynamics of droplet impingement on hot surfaces of varying wettability. International Journal of Heat and Mass Transfer, 108, 1714–1726. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.076

    Article  Google Scholar 

  26. Dupeux, G., Le Merrer, M., Lagubeau, G., Clanet, C., Hardt, S., & Quere, D. (2011). Viscous mechanism for Leidenfrost propulsion on a ratchet. EPL. https://doi.org/10.1209/0295-5075/96/58001

    Article  Google Scholar 

  27. Liu, G. M., Fu, L., Rode, A. V., & Craig, V. S. J. (2011). Water Droplet motion control on superhydrophobic surfaces: Exploiting the Wenzel-to-Cassie transition. Langmuir, 27(6), 2595–2600. https://doi.org/10.1021/la104669k

    Article  Google Scholar 

  28. Lagubeau, G., Le Merrer, M., Clanet, C., & Quere, D. (2011). Leidenfrost on a ratchet. Nature Physics, 7(5), 395–398. https://doi.org/10.1038/NPHYS1925

    Article  Google Scholar 

  29. Zhong, L. S., & Guo, Z. G. (2017). Effect of surface topography and wettability on the Leidenfrost effect. Nanoscale, 9(19), 6219–6236. https://doi.org/10.1039/c7nr01845b

    Article  Google Scholar 

  30. Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., & Ndao, S. (2013). Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. Langmuir, 29(31), 9798–9806. https://doi.org/10.1021/la401936w

    Article  Google Scholar 

  31. Kwon, H. M., Bird, J. C., & Varanasi, K. K. (2013). Increasing Leidenfrost point using micro-nano hierarchical surface structures. Applied Physics Letters. https://doi.org/10.1063/1.4828673

    Article  Google Scholar 

  32. Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. C., & Thoroddsen, S. T. (2012). Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 489(7415), 274–277. https://doi.org/10.1038/nature11418

    Article  Google Scholar 

  33. Hays, R., Maynes, D., & Crockett, J. (2016). Thermal transport to droplets on heated superhydrophobic substrates. International Journal of Heat and Mass Transfer, 98, 70–80. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.011

    Article  Google Scholar 

  34. del Cerro, D. A., Marin, A. G., Romer, G. R. B. E., Pathiraj, B., Lohse, D., & Huisin’t Veld, A. J. H. (2012). Leidenfrost point reduction on micropatterned metallic surfaces. Langmuir, 28(42), 15106–15110. https://doi.org/10.1021/la302181f

    Article  Google Scholar 

  35. Kim, S. H., Jiang, Y. Y., & Kim, H. (2018). Droplet impact and LFP on wettability and nanostructured surface. Experimental Thermal and Fluid Science, 99, 85–93. https://doi.org/10.1016/j.expthermflusci.2018.07.029

    Article  Google Scholar 

  36. Kim, H., Truong, B., Buongiorno, J., & Hu, L. W. (2011). On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Applied Physics Letters. https://doi.org/10.1063/1.3560060

    Article  Google Scholar 

  37. Weickgenannt, C. M., Zhang, Y. Y., Sinha-Ray, S., Roisman, I. V., Gambaryan-Roisman, T., Tropea, C., & Yarin, A. L. (2011). Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Physical Review E. https://doi.org/10.1103/PhysRevE.84.036310

    Article  Google Scholar 

  38. Nair, H., Staat, H. J. J., Tran, T., van Houselt, A., Prosperetti, A., Lohse, D., & Sun, C. (2014). The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matter, 10(13), 2102–2109. https://doi.org/10.1039/c3sm52326h

    Article  Google Scholar 

  39. Zhao, J., Yao, G. C., & Wen, D. S. (2020). Salinity-dependent alterations of static and dynamic contact angles in oil/brine/calcite systems: A molecular dynamics simulation study. Fuel. https://doi.org/10.1016/j.fuel.2020.117615

    Article  Google Scholar 

  40. Ferreira, R. B., Falcao, D. S., Oliveira, V. B., & Pinto, A. M. F. R. (2015). Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell. Energy, 82, 619–628. https://doi.org/10.1016/j.energy.2015.01.071

    Article  Google Scholar 

  41. Villegas, L. R., Tanguy, S., Castanet, G., Caballina, O., & Lemoine, F. (2017). Direct numerical simulation of the impact of a droplet onto a hot surface above the Leidenfrost temperature. International Journal of Heat and Mass Transfer, 104, 1090–1109. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.105

    Article  Google Scholar 

  42. Kumar, R., Shukla, R. K., Kumar, A., & Kumar, A. (2020). A computational study on air entrapment and its effect on convective heat transfer during droplet impact on a substrate. International Journal of Thermal Sciences. https://doi.org/10.1016/j.ijthermalsci.2020.106363

    Article  Google Scholar 

  43. Yin, C. C., Wang, T. Y., Che, Z. Z., Jia, M., & Sun, K. (2018). Oblique impact of droplets on microstructured superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 123, 693–704. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.060

    Article  Google Scholar 

  44. Fardad, D., & Ladommatos, N. (1999). Evaporation of hydrocarbon compounds, including gasoline and diesel fuel, on heated metal surfaces. Proceedings of the Institution of Mechanical Engineers Part D, 213(D6), 625–645. https://doi.org/10.1243/0954407991527152

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Project code: 51676084), Jilin Province Specific Project of Industrial Technology Research & Development (Project code: 2020C025-2), Natural Science Foundation of Jilin Province (Project code: 20220101212JC), Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University (Project code: JCZT20220202) and 2021 “Interdisciplinary Integration and Innovation” Project of Jilin University (Project code: XJRCYB07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanchen Sun.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Guo, L., Cai, N. et al. Evaporation Characteristics and Morphological Evolutions of Fuel Droplets After Hitting Different Wettability Surfaces. J Bionic Eng 20, 734–747 (2023). https://doi.org/10.1007/s42235-022-00293-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00293-y

Keywords

Navigation