Skip to main content
Log in

Biopolymers and Biomimetic Materials in Medical and Electronic-Related Applications for Environment–Health–Development Nexus: Systematic Review

  • Review Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Biocomposites as bio-inspired materials are produced from renewable resources that are organic and ecofriendly alternative materials. To improve the lifestyle of human beings as well as enhancing the environmental indices, functional bio-materials are now implemented in various promising industries. This work has systematically discussed and highlighted the implementations and trends of functional bionic materials in high tech industries, which are necessary for developing modern societies. Various medical, electronic, food and pharmaceutical applications have been considered. Bio-inspired materials are used to develop more sustainable possibilities to increase environmental conservation while maintaining customer satisfaction. Biopolymers were found employed in several sectors for various functional bio-products including organic thin-film transistors, organic phototransistor, emitting diodes, photodiodes, photovoltaic solar cells, hybrid dental resins, sustainable pharmaceuticals, and food packaging. They are used to create sustainable bio-products for energy storage and harvesting, bone regeneration, nerve damage repair, drug applications and various other industrial subcategories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This work has no associated data.

References

  1. AlMaadeed, M. A., Kahraman, R., Noorunnisa Khanam, P., & Madi, N. (2012). Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: Mechanical and thermal properties. Materials & Design, 42, 289–294.

    Article  Google Scholar 

  2. AL-Oqla, F. M., & Sapuan, S. (2015). Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. JOM Journal of the Minerals Metals and Materials Society, 67(10), 2450–2463.

    Article  Google Scholar 

  3. Peng, X., Zhang, B., Wang, Z., Su, W., Niu, S., Han, Z., & Ren, L. (2022). Bioinspired strategies for excellent mechanical properties of composites. Journal of Bionic Engineering, 2, 1–26.

    Google Scholar 

  4. Habibi, Y., El-Zawawy, W. K., Ibrahim, M. M., & Dufresne, A. (2008). Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Composites Science and Technology, 68(7), 1877–1885.

    Article  Google Scholar 

  5. Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Arief, S., Sapuan, S. M., & Ishak, M. R. (2014). Mechanical properties of water hyacinth fibers–polyester composites before and after immersion in water. Materials & Design, 58, 125–129.

    Article  Google Scholar 

  6. AL-Oqla, F. M., & Salit, M. S. (2017). Materials Selection for Natural Fiber Composites (Vol. 1). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100958-1.09993-X

    Book  Google Scholar 

  7. Ahuja, T., Mir, I. A., & Kumar, D. (2007). Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials, 28(5), 791–805.

    Article  Google Scholar 

  8. Nour, S., Baheiraei, N., Imani, R., Rabiee, N., Khodaei, M., Alizadeh, A., & Moazzeni, S. M. (2019). Bioactive materials: A comprehensive review on interactions with biological microenvironment based on the immune response. Journal of Bionic Engineering, 16(4), 563–581.

    Article  Google Scholar 

  9. Ilyas, R., Sapuan, S., Norrrahim, M. N. F., Yasim-Anuar, T. A. T., Kadier, A., Kalil, M. S., & Abral, H. (2020). Nanocellulose/starch biopolymer nanocomposites: Processing, manufacturing, and applications. Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 65–88). Elsevier.

    Chapter  Google Scholar 

  10. AL-Oqla, F. M. (2020). Biocomposites in advanced biomedical and electronic systems applications. Composites in Biomedical Applications (pp. 49–70). CRC Press.

    Chapter  Google Scholar 

  11. Alwani, M. S., Khalil, H. A., Sulaiman, O., Islam, M. N., & Dungani, R. (2013). An approach to using agricultural waste fibres in biocomposites application: Thermogravimetric analysis and activation energy study. BioResources, 9(1), 218–230.

    Article  Google Scholar 

  12. AL-Oqla, F. M., & Omar, A. A. (2012). A decision-making model for selecting the GSM mobile phone antenna in the design phase to increase over all performance. Progress In Electromagnetics Research C, 25, 249–269. https://doi.org/10.2528/PIERC11102702

    Article  Google Scholar 

  13. AL-Oqla, F. M., Omar, A. A., & Fares, O. (2018). Evaluating sustainable energy harvesting systems for human implantable sensors. International Journal of Electronics, 105(3), 504–517.

    Google Scholar 

  14. Averous, L. (2012). Synthesis, properties, environmental and biomedical applications of polylactic acid. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, 171–188.

  15. Cheung, H. Y., Ho, M. P., Lau, K. T., Cardona, F., & Hui, D. I. (2009). Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 40(7), 655–663.

    Article  Google Scholar 

  16. Das, P. P., Chaudhary, V., & Mishra, S. (2021). Emerging trends in green polymer based composite materials: properties, fabrication and applications. Graphene Based Biopolymer Nanocomposites (pp. 1–24). Springer.

    Google Scholar 

  17. AL-Oqla, F. M. (2020). Evaluation and comparison of date palm fibers with other common natural fibers. Date Palm Fiber Composites (pp. 267–286). Springer.

    Chapter  Google Scholar 

  18. AL-Oqla, F. M., & Hayajneh, M. T. (2007). A design decision-making support model for selecting suitable product color to increase probability Design Challenge Conference: Managing Creativity, Innovation, and Entrepreneurship, Amman, Jordan.

  19. AL-Oqla, F. M., Hayajneh, M. T., & Fares, O. (2019). Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. Journal of Cleaner Production, 241, 118256.

    Article  Google Scholar 

  20. AL-Oqla, F. M., & Omari, M. A. (2017). Sustainable Biocomposites: Challenges,Potential and Barriers for Development. In M. Jawaid, Sapuan, Salit Mohd, Alothman, Othman Y (Ed.), Green biocomposites: manufacturing and properties (pp. 13–29). Springer International Publishing (Verlag). https://doi.org/10.1007/978-3-319-46610-2

  21. Fares, O., AL-Oqla, F. M., & Hayajneh, M. T. (2019). Dielectric relaxation of Mediterranean Lignocellulosic Fibers for Sustainable Functional Biomaterials. Materials Chemistry and Physics.

  22. AL-Oqla, F. M., & Rababah, M. (2017). Challenges in design of nanocellulose and its composites for different applications. In Cellulose-Reinforced Nanofibre Composites (pp. 113–127). Elsevier.

  23. AL-Oqla, F. M., & Sapuan, S. (2018). Investigating the inherent characteristic /performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. Journal of Polymers and the Environment, 26(3), 1290–1296.

    Article  Google Scholar 

  24. AL-Oqla, F. M., & Sapuan, S. (2020). Advanced processing, properties, and applications of starch and other bio-based polymers. In. Cambridge, USA: Elsevier.

  25. McIlhagger, A., Archer, E., & McIlhagger, R. (2020). Manufacturing processes for composite materials and components for aerospace applications. In Polymer composites in the aerospace industry (pp. 59–81). Elsevier.

  26. AL-Oqla, F. M. (2021). Performance trends and deteriorations of lignocellulosic grape fiber/polyethylene biocomposites under harsh environment for enhanced sustainable bio-materials. Cellulose, 28(4), 2203–2213.

    Article  Google Scholar 

  27. Sapuan, S., Haniffah, W., & AL-Oqla, F. M. (2016). effects of reinforcing elements on the performance of laser transmission welding process in polymer composites: A systematic review. International Journal of Performability Engineering, 12(6), 553.

    Google Scholar 

  28. AL-Oqla, F. M., & Hayajneh, M. T. (2020). A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. International Journal of Sustainable Engineering, 2, 1–6.

    Google Scholar 

  29. San Ha, N., & Lu, G. (2020). A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites Part B: Engineering, 181, 107496.

    Article  Google Scholar 

  30. Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & AL-Oqla F. M. (2019). Development of photovoltaic module with fabricated and evaluated novel backsheet-based biocomposite materials. Materials, 12(18), 3007.

    Article  Google Scholar 

  31. AL-Oqla, F. M. (2017). Investigating the mechanical performance deterioration of mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose, 24(6), 2523–2530.

    Article  Google Scholar 

  32. AL-Oqla, F. M. (2020). Flexural characteristics and impact rupture stress investigations of sustainable green olive leaves bio-composite materials. Journal of Polymers and the Environment, 2, 1–8.

    Google Scholar 

  33. AL-Oqla, F. M., Almagableh, A., & Omari, M. A. (2017). Design and fabrication of green biocomposites. Green Biocomposites (pp. 45–67). Berlin: Springer.

    Google Scholar 

  34. AL-Oqla, F. M., & El-Shekeil, Y. (2019). Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. Journal of Cleaner Production, 222, 865–870.

    Article  Google Scholar 

  35. Mahmood, K., Kamilah, H., Shang, P. L., Sulaiman, S., & Ariffin, F. (2017). A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Bioscience, 19, 110–120.

    Article  Google Scholar 

  36. Syafiq, R., Sapuan, S., Zuhri, M., Ilyas, R., Nazrin, A., Sherwani, S., & Khalina, A. (2020). Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers, 12(10), 2403.

    Article  Google Scholar 

  37. Jumaidin, R., Zainel, S. N. M., & Sapuan, S. (2020). Processing of thermoplastic starch. Advanced Processing, Properties, and Applications of Starch and Other Bio-based Polymers (pp. 11–19). Elsevier.

    Chapter  Google Scholar 

  38. AL-Oqla, F. M., Sapuan, S., & Fares, O. (2018). Electrical–based applications of natural fiber vinyl polymer composites. Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites (pp. 349–367). Elsevier.

    Chapter  Google Scholar 

  39. Ates, B., Koytepe, S., Ulu, A., Gurses, C., & Thakur, V. K. (2020). Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chemical Reviews., 2, 2.

    Google Scholar 

  40. Bayer, I. S., Guzman-Puyol, S., Heredia-Guerrero, J. A., Ceseracciu, L., Pignatelli, F., Ruffilli, R., & Athanassiou, A. (2014). Direct transformation of edible vegetable waste into bioplastics. Macromolecules, 47(15), 5135–5143.

    Article  Google Scholar 

  41. Bhatti, H. N., Mahmood, Z., Kausar, A., Yakout, S. M., Shair, O. H., & Iqbal, M. (2020). Biocomposites of polypyrrole, polyaniline and sodium alginate with cellulosic biomass: Adsorption-desorption, kinetics and thermodynamic studies for the removal of 2, 4-dichlorophenol. International Journal of Biological Macromolecules., 2, 2.

    Google Scholar 

  42. Koller, M., Maršálek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24–38.

    Article  Google Scholar 

  43. Mazerolles, T., Heuzey, M.-C., Soliman, M., Martens, H., Kleppinger, R., & Huneault, M. A. (2020). Development of multilayer barrier films of thermoplastic starch and low-density polyethylene. Journal of Polymer Research, 27(2), 1–15.

    Article  Google Scholar 

  44. Jiang, T., Duan, Q., Zhu, J., Liu, H., & Yu, L. (2020). Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research, 3(1), 8–18.

    Article  Google Scholar 

  45. Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089.

    Article  Google Scholar 

  46. Zhu, F. (2019). Starch based Pickering emulsions: Fabrication, properties, and applications. Trends in Food Science & Technology, 85, 129–137.

    Article  Google Scholar 

  47. Abral, H., Basri, A., Muhammad, F., Fernando, Y., Hafizulhaq, F., Mahardika, M., & Stephane, I. (2019). A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids, 93, 276–283.

    Article  Google Scholar 

  48. Ilyas, R., Sapuan, S., Atiqah, A., Ibrahim, R., Abral, H., Ishak, M., & Ansari, M. (2020). Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polymer Composites, 41(2), 459–467.

    Article  Google Scholar 

  49. Omran, A. A. B., Mohammed, A. A., Sapuan, S., Ilyas, R., Asyraf, M., Rahimian Koloor, S. S., & Petrů, M. (2021). Micro-and nanocellulose in polymer composite materials: A review. Polymers, 13(2), 231.

    Article  Google Scholar 

  50. Yamada, M., Morimitsu, S., Hosono, E., & Yamada, T. (2020). Preparation of bioplastic using soy protein. International Journal of Biological Macromolecules, 149, 1077–1083.

    Article  Google Scholar 

  51. Xu, C., Xu, Y., Chen, M., Zhang, Y., Li, J., Gao, Q., & Shi, S. Q. (2020). Soy protein adhesive with bio-based epoxidized daidzein for high strength and mildew resistance. Chemical Engineering Journal, 390, 124622.

    Article  Google Scholar 

  52. Ilyas, R., Sapuan, S., Sanyang, M. L., Ishak, M. R., & Zainudin, E. (2018). Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: A review. Current Analytical Chemistry, 14(3), 203–225.

    Article  Google Scholar 

  53. Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S., Asim, M., & Saba, N. (2019). Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 40(2), 446–463.

    Article  Google Scholar 

  54. Vinod, A., Sanjay, M., Suchart, S., & Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, 120978.

    Article  Google Scholar 

  55. Souzandeh, H., Wang, Y., Netravali, A. N., & Zhong, W.-H. (2019). Towards sustainable and multifunctional air-filters: A review on biopolymer-based filtration materials. Polymer Reviews, 59(4), 651–686.

    Article  Google Scholar 

  56. Taskin, M. B., Ahmad, T., Wistlich, L., Meinel, L., Schmitz, M., Rossi, A., Groll, J., & r. (2021). bioactive electrospun fibers: fabrication strategies and a critical review of surface-sensitive characterization and quantification. Chemical Reviews., 2, 2.

    Google Scholar 

  57. Azeredo, H., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3, 7.

    Article  Google Scholar 

  58. Yadav, B., Talan, A., Tyagi, R., & Drogui, P. (2021). Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. Bioresource Technology, 2, 125419.

    Article  Google Scholar 

  59. Das, O., Kim, N. K., Hedenqvist, M. S., Bhattacharyya, D., Johansson, E., Xu, Q., & Holder, S. (2020). Naturally-occurring bromophenol to develop fire retardant gluten biopolymers. Journal of Cleaner Production, 243, 118552.

    Article  Google Scholar 

  60. Sapuan, S. M., Pua, F.-L., El-Shekeil, Y. A., & AL-Oqla, F. M. (2013). Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Materials & Design, 50, 467–470. https://doi.org/10.1016/j.matdes.2013.03.013

    Article  Google Scholar 

  61. Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & AL-Oqla, F. M. (2019). Polymer matrix materials selection for short sugar palm composites using integrated multi criteria evaluation method. Composites Part B: Engineering, 2, 107342.

    Article  Google Scholar 

  62. Alaaeddin, M., Sapuan, S., Zuhri, M., & Zainudin, E. (2019). Physical and mechanical properties of polyvinylidene fluoride-Short sugar palm fiber nanocomposites. Journal of Cleaner Production, 235, 473–482.

    Article  Google Scholar 

  63. AL-Oqla, F. M., S. M. Sapuan, M. R. Ishak, & A.A., N. (2015, March, 3, 2015). Selecting natural fibers for industrial applications. Postgraduate Symposium on Biocomposite Technology Serdang, Malaysia.

  64. AL-Oqla, F. M., Sapuan, M. S., Ishak, M. R., & Aziz, N. A. (2014). Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: Date palm fibers as a case study. BioResources, 9(3), 4608–4621. https://doi.org/10.15376/biores.9.3.4608-4621

    Article  Google Scholar 

  65. AL-Oqla, F. M., Sapuan, M. S., Ishak, M. R., & Nuraini, A. A. (2015). Decision making model for optimal reinforcement condition of natural fiber composites. Fibers and Polymers, 16(1), 153–163.

    Article  Google Scholar 

  66. AL-Oqla, F. M., Sapuan, S., & Jawaid, M. (2016). Integrated mechanical-economic–environmental quality of performance for natural fibers for polymeric-based composite materials. Journal of Natural Fibers, 13(6), 651–659.

    Google Scholar 

  67. Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552–571.

    Article  Google Scholar 

  68. Lai, G., Zhao, L., Wang, J., & Kunzelmann, K.-H. (2018). Surface properties and color stability of dental flowable composites influenced by simulated toothbrushing. Dental Materials Journal, 2, 2017–2233.

    Google Scholar 

  69. Peterson, J., Rizk, M., Hoch, M., & Wiegand, A. (2018). Bonding performance of self-adhesive flowable composites to enamel, dentin and a nano-hybrid composite. Odontology, 106(2), 171–180.

    Article  Google Scholar 

  70. Butcher, A. L., Offeddu, G. S., & Oyen, M. L. (2014). Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends in Biotechnology, 32(11), 564–570.

    Article  Google Scholar 

  71. Guimard, N. K., Gomez, N., & Schmidt, C. E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32(8), 876–921.

    Article  Google Scholar 

  72. Al-Ghraibah, A. M., Al-Qudah, M., & AL-Oqla, F. M. (2020). medical implementations of biopolymers. Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 157–171). Elsevier.

    Chapter  Google Scholar 

  73. Shera, S. S., & Banik, R. M. (2021). development of tunable silk fibroin/xanthan biopolymeric scaffold for skin tissue engineering using l929 fibroblast cells. Journal of Bionic Engineering, 18(1), 103–117.

    Article  Google Scholar 

  74. Jiang, Q., Reddy, N., & Yang, Y. (2010). Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomaterialia, 6(10), 4042–4051.

    Article  Google Scholar 

  75. Hardy, J. G., Lee, J. Y., & Schmidt, C. E. (2013). Biomimetic conducting polymer-based tissue scaffolds. Current Opinion in Biotechnology, 24(5), 847–854.

    Article  Google Scholar 

  76. Freeman, R., Boekhoven, J., Dickerson, M. B., Naik, R. R., & Stupp, S. I. (2015). Biopolymers and supramolecular polymers as biomaterials for biomedical applications. MRS Bulletin, 40(12), 1089–1101.

    Article  Google Scholar 

  77. Modjarrad, K., & Ebnesajjad, S. (2013). Handbook of polymer applications in medicine and medical devices. Elsevier.

    Google Scholar 

  78. Fares, O. O., & AL-Oqla, F. M. (2020). Modern electrical applications of biopolymers. Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 173–184). Elsevier.

    Chapter  Google Scholar 

  79. Jun, S.-K., Cha, J.-R., Knowles, J. C., Kim, H.-W., Lee, J.-H., & Lee, H.-H. (2020). Development of Bis-GMA-free biopolymer to avoid estrogenicity. Dental Materials, 36(1), 157–166.

    Article  Google Scholar 

  80. Szczesio-Wlodarczyk, A., Domarecka, M., Kopacz, K., Sokolowski, J., & Bociong, K. (2021). An evaluation of the properties of urethane dimethacrylate-based dental resins. Materials, 14(11), 2727.

    Article  Google Scholar 

  81. Pałka, K. (2020). Polymerization shrinkage of new dental composites modified with liquid rubber. Engineering of Biomaterials, 23(158 spec. iss.).

  82. Loumprinis, N., Maier, E., Belli, R., Petschelt, A., Eliades, G., & Lohbauer, U. (2021). Viscosity and stickiness of dental resin composites at elevated temperatures. Dental Materials, 37(3), 413–422.

    Article  Google Scholar 

  83. Srivastava, S. K., & Pal, B. G. (2018). Metallic biomaterials for dental implant systems. Fundamental Biomaterials: Metals (pp. 111–137). Elsevier.

    Chapter  Google Scholar 

  84. Baggio, A. M. P., Guiotti, A. M., de Almeida, J. M., Ferriolli, S. C., Delamura, I. F., & Bassi, A. P. F. (2021). Agenesis treatment with osseointegrated implant and filling of the buccal bone plate with biomaterial. Research, Society and Development, 10(6), e40110615783–e40110615783.

    Article  Google Scholar 

  85. Cekic-Nagas, I., Egilmez, F., Ergun, G., Vallittu, P. K., & Lassila, L. V. J. (2017). Load-bearing capacity of novel resin-based fixed dental prosthesis materials. Dental Materials Journal, 2, 2016–2367.

    Google Scholar 

  86. Perea-Lowery, L., & Vallittu, P. K. (2018). Framework design and pontics of fiber-reinforced composite fixed dental prostheses-an overview. Journal of Prosthodontic Research, 62(3), 281–286.

    Article  Google Scholar 

  87. Reis, G. R., Vilela, A. L. R., Silva, F. P., Borges, M. G., de Freitas Santos-Filho, P. C., & de Sousa Menezes, M. (2017). Minimally invasive approach in esthetic dentistry: Composite resin versus ceramics veneers. Bioscience Journal, 33, 1.

    Google Scholar 

  88. Assery, M. K., Ajwa, N., Alshamrani, A., Alanazi, B. J., Durgesh, B. H., & Matinlinna, J. P. (2019). Titanium dioxide nanoparticles reinforced experimental resin composite for orthodontic bonding. Materials Research Express, 6(12), 125098.

    Article  Google Scholar 

  89. Liu, L., Liang, H., Zhang, J., Zhang, P., Xu, Q., Lu, Q., & Zhang, C. (2018). Poly (vinyl alcohol)/Chitosan composites: Physically transient materials for sustainable and transient bioelectronics. Journal of Cleaner Production, 195, 786–795.

    Article  Google Scholar 

  90. Sun, S.-S., & Dalton, L. R. (2008). Introduction to Organic Electronic and Optoelectronic Materials and Devices. CRC Press.

    Google Scholar 

  91. AL-Oqla, F. M., & Omar, A. A. (2015). An expert-based model for selecting the most suitable substrate material type for antenna circuits. International Journal of Electronics, 102(6), 1044–1055.

    Article  Google Scholar 

  92. Chen, J.-X., Li, X.-X., Tao, J.-J., Cui, H.-Y., Huang, W., Ji, Z.-G., & Zhang, D. W. (2020). Fabrication of a Nb-doped β-Ga2O3 nanobelt field-effect transistor and its low-temperature behavior. ACS Applied Materials & Interfaces, 12(7), 8437–8445.

    Article  Google Scholar 

  93. Fukuda, K., Takeda, Y., Mizukami, M., Kumaki, D., & Tokito, S. (2014). Fully solution-processed flexible organic thin film transistor arrays with high mobility and exceptional uniformity. Scientific reports, 4(1), 1–8.

    Google Scholar 

  94. Tortora, L., Urbini, M., Fabbri, A., Branchini, P., Mariucci, L., Rapisarda, M., & Di Capua, F. (2018). Three-dimensional characterization of OTFT on modified hydrophobic flexible polymeric substrate by low energy Cs+ ion sputtering. Applied Surface Science, 448, 628–635.

    Article  Google Scholar 

  95. Fukagawa, H., Sasaki, T., Tsuzuki, T., Nakajima, Y., Takei, T., Motomura, G., & Shimizu, T. (2018). Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes. Advanced Materials, 30(28), 1706768.

    Article  Google Scholar 

  96. Iqbal, A., Sambyal, P., & Koo, C. M. (2020). 2D MXenes for electromagnetic shielding: A review. Advanced Functional Materials, 30(47), 2000883.

    Article  Google Scholar 

  97. Chu, Y., Wu, X., Lu, J., Liu, D., Du, J., Zhang, G., & Huang, J. (2016). Photosensitive and flexible organic field-effect transistors based on interface trapping effect and their application in 2D imaging array. Advanced Science, 3(8), 1500435.

    Article  Google Scholar 

  98. Cui, H., Hensleigh, R., Yao, D., Maurya, D., Kumar, P., Kang, M. G., & Zheng, X. R. (2019). Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials, 18(3), 234–241.

    Article  Google Scholar 

  99. Chen, J., Qiu, Q., Han, Y., & Lau, D. (2019). Piezoelectric materials for sustainable building structures: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 101, 14–25.

    Article  Google Scholar 

  100. Majeed, K., Jawaid, M., Hassan, A., Bakar, A. A., Khalil, H. A., Salema, A. A., & Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 46, 391–410.

    Article  Google Scholar 

  101. Sanyang, M., Ilyas, R., Sapuan, S., & Jumaidin, R. (2018). Sugar palm starch-based composites for packaging applications. Bionanocomposites for Packaging Applications (pp. 125–147). Springer.

    Chapter  Google Scholar 

  102. Sanyang, M., & Sapuan, S. (2015). Development of expert system for biobased polymer material selection: Food packaging application. Journal of Food Science and Technology, 52(10), 6445–6454.

    Article  Google Scholar 

  103. Spiridon, I., Ursu, R. G., & Spiridon, I. A. C. (2015). New polylactic acid composites for packaging applications: Mechanical properties, thermal behavior, and antimicrobial activity. International Journal of Polymer Analysis and Characterization, 20(8), 681–692.

    Article  Google Scholar 

  104. Rababah, M. M., & AL-Oqla, F. M. (2020). Biopolymer composites and sustainability. Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 1–10). Elsevier.

    Google Scholar 

  105. Amara, C., El Mahdi, A., Medimagh, R., & Khwaldia, K. (2021). Nanocellulose-based composites for packaging applications. Current Opinion in Green and Sustainable Chemistry, 31, 100512.

    Article  Google Scholar 

  106. Zhou, Y., Liu, F., & Wang, H. (2017). Novel organic–inorganic composites with high thermal conductivity for electronic packaging applications: A key issue review. Polymer Composites, 38(4), 803–813.

    Article  Google Scholar 

Download references

Funding

No funding was received to perform this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faris Mohammed AL-Oqla.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Oqla, F.M., Alaaeddin, M.H., Hoque, M.E. et al. Biopolymers and Biomimetic Materials in Medical and Electronic-Related Applications for Environment–Health–Development Nexus: Systematic Review. J Bionic Eng 19, 1562–1577 (2022). https://doi.org/10.1007/s42235-022-00240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00240-x

Keywords

Navigation