Skip to main content
Log in

Cockroach-inspired Traversing Narrow Obstacles for a Sprawled Hexapod Robot

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Inspired by the cockroach’s use of a pitch-roll mode traverses through narrow obstacles, we improve the RHex-style robot by adding two sprawl joints to adjust the body posture, and propose a novel pitch-roll approach that enables an RHex-style robot to traverse through two cylindrical obstacles with a spacing of 90 mm, about 54% body width. First, the robot can pitch up against the obstacle on the one side by the cooperation of its rear and middle legs. Then, the robot rotates one side rear leg to kick the ground fast, meanwhile the sprawl joint on the other side rotates inward to make the robot roll and fall forward. Finally, the robot can rotate the legs on the ground to move the body forward until it crosses the obstacles. In this article, both cylinder and rectangular columns are considered as the narrow obstacles for traversing. The experiments are demonstrated by using the proposed approach, and the results show that the robot can smoothly traverse through different narrow spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Arumugam, R., Enti, V. R., & Liu, B. (2010). A cloud computing framework for service robots. IEEE International Conference on Robotics and Automation, Anchorage, USA (pp. 3084–3089).

  2. Luo, R. C., Hsu, T. Y., Lin, T. Y., & Su, K. L. (2005). The development of intelligent home security robot. IEEE International Conference on Mechatronics, Taipei (pp. 422–427).

  3. Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94–111.

    Article  Google Scholar 

  4. Wang, C. Y., Zhang, W. P., Zou, Y., Meng, R., Zhao, J. X., & Wei, M. C. (2020). A sub-100 mg electromagnetically driven insect-inspired flapping-wing micro robot capable of liftoff and control torques modulation. Journal of Bionic Engineering, 17, 1085–1095.

    Article  Google Scholar 

  5. Chen, G., Tu, J. J., Ti, X. C., & Hu, H. S. (2020). A single-legged robot inspired by the jumping mechanism of click beetles and its hopping dynamics analysis. Journal of Bionic Engineering, 17, 1109–1125.

    Article  Google Scholar 

  6. Ding, L., Gao, H. B., Deng, Z. Q., Song, J. H., Liu, Y. Q., Liu, G., & Iagnemma, K. (2013). Foot–terrain interaction mechanics for legged robots: Modeling and experimental validation. The International Journal of Robotics Research, 32, 1585–1606.

    Article  Google Scholar 

  7. Ding, L., Huang, L., Li, S., Gao, H. B., Deng, H. C., Li, Y. C., & Liu, G. J. (2020). Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain. IEEE Transactions on Robotics, 36, 894–909.

    Article  Google Scholar 

  8. Iagnemma, K., Rzepniewski, A., Dubowsky, S., & Schenker, P. (2003). Control of robotic vehicles with actively articulated suspensions in rough terrain. Autonomous Robots, 14, 5–16.

    Article  Google Scholar 

  9. Shkolnik, A., Levashov, M., Manchester, I. R., & Tedrake, R. (2011). Bounding on rough terrain with the LittleDog robot. The International Journal of Robotics Research, 30, 192–215.

    Article  Google Scholar 

  10. Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bagnell, J. A., Atkeson, C. G., & Kuffner, J. (2011). Optimization and learning for rough terrain legged locomotion. The International Journal of Robotics Research, 30, 175–191.

    Article  Google Scholar 

  11. Hutter, M., Gehring, C., Lauber, A., Gunther, F., Bellicoso, C. D., Tsounis, V., Fankhauser, P., Diethelm, R., Bachmann, S., Bloesch, M., Kolvenbach, H., Bjelonic, M., Isler, L., & Meyer, K. (2017). ANYmal—Toward legged robots for harsh environments. Advanced Robotics, 31, 918–931.

    Article  Google Scholar 

  12. Bellicoso, C. D., Bjelonic, M., Wellhausen, L., Holtmann, K., Günther, F., Tranzatto, M., Fankhauser, P., & Hutter, M. (2018). Advances in real-world applications for legged robots. Journal of Field Robotics, 35, 1311–1326.

    Article  Google Scholar 

  13. Zhao, D., & Revzen, S. (2020). Multi-legged steering and slipping with low DoF hexapod robots. Bioinspiration & Biomimetics, 15, 045001.

    Article  Google Scholar 

  14. Saranli, U., Buehler, M., & Koditschek, D. E. (2001). RHex: A simple and highly mobile hexapod robot. The International Journal of Robotics Research, 20, 616–631.

    Article  Google Scholar 

  15. Moore, E. Z., Campbell, D., Grimminger, F., & Buehler, M. (2002). Reliable stair climbing in the simple hexapod’RHex’. IEEE International Conference on Robotics and Automation, 3, 2222–2227.

    Google Scholar 

  16. Chou, Y. C., Yu, W. S., Huang, K. J., & Lin, P. C. (2012). Bio-inspired step-climbing in a hexapod robot. Bioinspiration & Biomimetics, 7, 036008.

    Article  Google Scholar 

  17. Johnson, A. M., & Koditschek, D. E. (2013). Toward a vocabulary of legged leaping. IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013, 2568–2575.

    Google Scholar 

  18. Jayaram, K., & Full, R. J. (2016). Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proceedings of the National Academy of Sciences, 113, E950–E957.

    Google Scholar 

  19. Cheah, W., Khalili, H. H., Arvin, F., Green, P., Watson, S., & Lennox, B. (2019). Advanced motions for hexapods. International Journal of Advanced Robotic Systems, 16, 1729881419841537.

    Article  Google Scholar 

  20. Li, C., Pullin, A. O., Haldane, D. W., Lam, H. K., Fearing, R. S., & Full, R. J. (2015). Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Bioinspiration & Biomimetics, 10, 046003.

    Article  Google Scholar 

  21. Koc, C., Koc, C., Su, B., Casarez, C. S., & Fearing, R. S. (2019). Body lift and drag for a legged millirobot in compliant beam environment. International Conference on Robotics and Automation, Montreal, Canada, 2019, 3108–3114.

    Google Scholar 

  22. Mi, J., Wang, Y. Q., & Li, C. (2021). Omni-Roach: A legged robot capable of traversing multiple types of large obstacles and self-righting. arXiv preprint https://arxiv.org/abs/2112.10614

  23. Günther, M., & Weihmann, T. (2011). The load distribution among three legs on the wall: Model predictions for cockroaches. Archive of Applied Mechanics, 81, 1269–1287.

    Article  Google Scholar 

  24. Watson, J. T., Ritzmann, R. E., Zill, S. N., & Pollack, A. J. (2002). Control of obstacle climbing in the cockroach, blaberus discoidalis. I. Kinematics. Journal of Comparative Physiology A, 188, 39–53.

    Article  Google Scholar 

  25. Watson, J. T., Ritzmann, R. E., & Pollack, A. J. (2002). Control of climbing behavior in the cockroach, blaberus discoidalis. II. Motor activities associated with joint movement. Journal of Comparative Physiology A, 188, 55–69.

    Article  Google Scholar 

  26. Barragan, M., Flowers, N., & Johnson, A. M. (2018). MiniRHex: A small, open-source, fully programmable walking hexapod. Science and Systems Workshop on “Design and Control of Small Legged Robots”, Pittsburgh (p. 30).

  27. Komsuoḡlu, H., Sohn, K., Full, R. J., & Koditschek, D. E. (2009). A physical model for dynamical arthropod running on level ground. In Experimental Robotics (pp 303–317).

  28. Othayoth, R., Thoms, G., & Li, C. (2020). An energy landscape approach to locomotor transitions in complex 3D terrain. National Academy of Sciences, 117, 14987–14995.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 51605393), China Postdoctoral Science Foundation (No. 2018M633398), State Key Laboratory of Robotics and Systems (HIT) (SKLRS-2020-KF-13), Sichuan Science and Technology Program (2020YJ0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 45063 KB)

Supplementary file2 (MP4 41800 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Pan, J., Lin, F. et al. Cockroach-inspired Traversing Narrow Obstacles for a Sprawled Hexapod Robot. J Bionic Eng 19, 1288–1301 (2022). https://doi.org/10.1007/s42235-022-00218-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00218-9

Keywords

Navigation