Skip to main content
Log in

Tribological and Physicochemical Analysis of Squid Pen High-density Polyethylene Biocomposite for Medical Application

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

High-Density Polyethylene (HDPE) wear debris generated in the hip joint prothesis leads to its loosening. The aim of this study was to evaluate the potential of Squid Pen (SP) on the tribological and physicochemical properties of HDPE matrix. Biocomposites filled with 0, 5, 10, 15 and 20 wt. % SP were elaborated by hot compression molding. Wear tests were carried out using a reciprocating pin-on-disc tribometer. Rockwell hardness, Fourier-Transform infra-red (FTIR) analysis, Scanning Electron Microscopy (SEM) of the biocomposite were analysed. FTIR analysis results of the biocomposites showed that an increase in the crystallinity rate was obtained with the addition of SP filler. Only 10 wt. % of SP has a significant effect on the hardness of the composite. The correlation between the friction coefficient and the wear resistance of the composite was investigated. The 5 wt. % SP-HDPE biocomposite has the lowest friction coefficient value with a decrease in the specific wear rate, compared to the unfilled HDPE. The SEM results showed that SP wear debris played an important role as a third roller body at the interface reducing the friction coefficient of the composite. It was concluded that the HDPE biocomposite could be successfully reinforced with 5 wt. % of SP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this article are available in Journal of Bionic Engineering website (Springer) with the DOI of the article.

References

  1. Buciumeanu, M., Araujo, A., Carvalho, O., Miranda, G., Souza, J. C. M., Silva, F. S., & Henriques, B. (2017). Study of the tribocorrosion behaviour of ti6al4v–ha biocomposites. Tribology International, 107, 77–84.

    Article  Google Scholar 

  2. Friedrich, K. (2018). Polymer composites for tribological applications. Advanced Industrial and Engineering Polymer Research, 1, 3–39.

    Article  Google Scholar 

  3. Al-allaq, A. A., Kashan, J. S., El-Wakad, M. T., & Soliman, A. M. (2021). Multiwall carbon nanotube reinforced ha/hdpe biocomposite for bone reconstruction. Periodicals of Engineering and Natural Sciences, 9, 930–939.

    Article  Google Scholar 

  4. Arumugam, S., Kandasamy, J., Shah, A. U. M., Sultan, M. T. H., Safri, S. N. A., Majid, M. S. A., Basri, A. A., & Mustapha, F. (2020). Investigations on the mechanical properties of coconut and sisal fiber composites for bone fracture fixation applications. Polymers, 12, 2–19.

    Article  Google Scholar 

  5. Hidaka, R., Matsuda, K., & Kawano, H. (2021). Rapid destruction of the hip joint after acetabular fracture in an elderly patient. Arthroplasty Today, 11, 122–126.

    Article  Google Scholar 

  6. Kumar, R. M., Gupta, P., Sharma, S. K., Mittal, A., Shekhar, M., Kumar, V., Manoj, K. B. V., Roy, P., & Lahiri, D. (2017). Sustained drug release from surface modified uhmwpe for acetabular cup lining in total hip implant. Materials Science and Engineering C, 77, 649–661.

    Article  Google Scholar 

  7. Vadivel, H. S., Bek, M., Šebenik, U., Perše, L. S., Kádár, R., Emami, N., & Kalin, M. (2021). Do the Particle Size, molecular weight, and processing of uhmwpe affect its thermomechanical and tribological performance? Journal of Materials Research and Technology, 12, 1728–1737.

    Article  Google Scholar 

  8. Wang, H. T., Li, J., Ma, S. T., Feng, W. Y., Wang, Q., Zhou, H. Y., Zhao, J. M., & Yao, J. (2018). A Study on the prevention and treatment of murine calvarial inflammatory osteolysis induced by ultra-high-molecular-weight polyethylene particles with neomangiferin. Experimental and Therapeutic Medicine, 16, 3889–3896.

    Google Scholar 

  9. Hossin, M. A., Shaqsi, N. H. K., Touby, S. S. J., & Sibani, M. A. (2021). A Review of polymeric chitin extraction, characterization, and applications. Arabian Journal of Geosciences, 14, 1–8.

    Article  Google Scholar 

  10. Plumlee, K., & Schwartz, C. J. (2009). Improved wear resistance of orthopaedic uhmwpe by reinforcement with zirconium particles. Wear, 276, 710–717.

    Article  Google Scholar 

  11. Mindivan, F., & Çolak, A. (2021). Tribo-material based on a uhmwpe/rgoc biocomposite for using in artificial joints. Journal of Applied Polymer Science, 138, 1–13.

    Article  Google Scholar 

  12. Sidia, B., & Bensalah, W. (2021). Tribological and mechanical behaviors of mollusk shell-ultrahigh molecular weight polyethylene bio-composite. Polymer Composites, 42, 3206–3215.

    Article  Google Scholar 

  13. Sidia, B., & Bensalah, W. (2020). Tribological properties of high density polyethylene based composite: The effect of mollusc shell particles under dry condition. Journal of Composite Materials, 55, 55–60.

    Google Scholar 

  14. Fouad, H., Elleithy, R., & Alothman, O. Y. (2013). Thermo-mechanical, wear and fracture behavior of high-density polyethylene/hydroxyapatite nano composite for biomedical applications: Effect of accelerated ageing. Journal of Materials Science and Technology, 29, 573–581.

    Article  Google Scholar 

  15. Dweiri, R. (2021). Processing and characterization of surface treated chicken eggshell and calcium carbonate particles filled high-density polyethylene composites. Materials Research, 24, 24–30.

    Article  Google Scholar 

  16. Jeong, S. H., Kim, J. K., Lim, Y. W., Hwang, H. B., Kwon, H. Y., Bae, B. S., & Jin, J. (2018). Squid pen-inspired chitinous functional materials: Hierarchical chitin fibers by centrifugal jet-spinning and transparent chitin fiber-reinforced composite. APL Materials, 6, 6–12.

    Article  Google Scholar 

  17. Cuong, H. N., Minh, N. C., Hoa, N. V., & Trung, T. S. (2016). Preparation and characterization of high purity β-chitin from squid pens (loligo chenisis). International Journal of Biological Macromolecules, 93, 442–447.

    Article  Google Scholar 

  18. Satitsri, S., & Muanprasat, C. (2020). Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications. Molecules, 25, 25–35.

    Article  Google Scholar 

  19. Kasprzak, D., & Galiński, M. (2021). DMSO as an auxiliary solvent in the fabrication of homogeneous chitin-based films obtaining from an ionic liquid process. European Polymer Journal, 158, 1–9.

    Article  Google Scholar 

  20. Shavandi, A., Bekhit, A. E. D. A., Sun, Z., Ali, A., & Goululd, M. (2015). A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Materials Science and Engineering C, 55, 373–383.

    Article  Google Scholar 

  21. Azadi, M., Teimouri, A., & Mehranzadeh, G. (2016). Preparation, characterization and biocompatible properties of β-chitin/silk fibroin/nanohydroxyapatite composite scaffolds prepared using a freeze-drying method. RSC Advances, 6, 7048–7060.

    Article  Google Scholar 

  22. Braguin, L. M. N., Silva, C. A. J., Berbel, L. O., Viveiros, B. V. G., Rossi, J. L., Costa, I., & Saiki, M. (2021). A study on corrosion resistance of iso 5832–1 austenitic stainless steel used as orthopedic implant. International Journal of Advances in Medical Biotechnology, 3, 23–28.

    Google Scholar 

  23. ASTM. (2008). D785–03-Standard test method for rockwell hardness of plastics and electrical insulating. In Annual Book of ASTM Standards; ASTM International: United States, 1–6.

  24. Borruto, A. (2010). A new material for hip prosthesis without considerable debris release. Medical Engineering and Physics, 32, 908–913.

    Article  Google Scholar 

  25. Mohammed, T. M. (2019). Nanocomposites in total hip joint replacements. Applications of Nanocomposite Materials in Orthopedics. Woodhead Publishing, 221–252.

  26. Zai, W., Wong, M. H., & Man, H. C. (2019). Improving the wear and corrosion resistance of cocrmo-uhmwpe articulating surfaces in the presence of an electrolyte. Applied Surface Science, 464, 404–411.

    Article  Google Scholar 

  27. Huang, J., Qu, S., Wang, J., Yang, D., Duan, K., & Weng, J. (2013). Reciprocating sliding wear behavior of alendronate sodium-loaded uhmwpe under different tribological conditions. Materials Science and Engineering C, 33, 3001–3009.

    Article  Google Scholar 

  28. Zerbi, G., Gallino, G., Fanti, N., & Baini, L. (1989). Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy. Polymer, 30, 2324–2327.

    Article  Google Scholar 

  29. Florek, M., Fornal, E., Gómezromero, P., Zieba, E., Paszkowicz, W., Lekki, J., Nowak, J., & Kuczumow, A. (2009). Complementary microstructural and chemical analyses of sepia officinalis endoskeleton. Materials Science and Engineering C, 29, 1220–1226.

    Article  Google Scholar 

  30. Wang, Q., Li, W., Liu, R. N., Zhang, K., Zhang, H. H., Fan, S. L., & Wang, Z. Y. (2019). Human and non-human bone identification using ftir spectroscopy. International Journal of Legal Medicine, 133, 269–276.

    Article  Google Scholar 

  31. Kourkoumelis, N., Zhang, X., Lin, Z., & Wang, J. (2019). Fourier transform infrared spectroscopy of bone tissue: Bone quality assessment in preclinical and clinical applications of osteoporosis and fragility fracture. Clinical Reviews in Bone and Mineral Metabolism, 17, 24–39.

    Article  Google Scholar 

  32. Kobrina, Y., Turunen, M. J., Saarakkala, S., Jurvelin, J. S., HautaKasari, M., & Isaksson, H. (2010). Cluster analysis of infrared spectra of rabbit cortical bone samples during maturation and growth. The Analyst, 12, 3147–3155.

    Article  Google Scholar 

  33. Chaber, R., Łach, K., Depciuch, J., Szmuc, K., Michalak, E., Raciborska, A., Koziorowska, A., & Cebulski, J. (2017). Fourier transform infrared (ftir) spectroscopy of paraffin and deparafinnized bone tissue samples as a diagnostic tool for ewing sarcoma of bones. Infrared Physics and Technology, 85, 364–371.

    Article  Google Scholar 

  34. Lavall, R. L., Assis, O. B. G., & CampanaFilho, S. P. (2007). β-Chitin from the pens of loligo sp.: Extraction and characterization. Bioresource Technology, 98, 2465–2472.

    Article  Google Scholar 

  35. Cortizo, M. S., Berghoff, C. F., & Alessandrini, J. L. (2008). Characterization of chitin from illex argentinus squid pen. Carbohydrate Polymers, 74, 10–15.

    Article  Google Scholar 

  36. Youn, D. K., No, H. K., & Prinyawiwatkul, W. (2013). Preparation and characteristics of squid pen β-chitin prepared under optimal deproteinisation and demineralisation condition. International Journal of Food Science and Technology, 48, 571–577.

    Article  Google Scholar 

  37. Stark, N. M., & Matuana, L. M. (2004). Surface chemistry changes of weathered hdpe/wood-flour composites studied by xps and ftir spectroscopy. Polymer Degradation and Stability, 86, 1–9.

    Article  Google Scholar 

  38. Hamzah, M., Khenfouch, M., Rjeb, A., Sayouri, S., Houssaini, D. S., Darhouri, M., & Srinivasu, V. (2008). Surface chemistry changes and microstructure evaluation of low density nanocluster polyethylene under natural weathering: a spectroscopic investigation. Journal of Physics: Conference Series, Johannesburg, South Africa, 1–14.

  39. Grigoriadou, I., Pavlidou, E., Paraskevopoulos, K. M., Terzopoulou, Z., & Bikiaris, D. N. (2018). Comparative study of the photochemical stability of hdpe/ag composites. Polymer Degradation and Stability, 153, 23–36.

    Article  Google Scholar 

  40. Salem, A., Bensalah, W., & Mezlini, S. (2019). Tribological investigation of hdpe-cuttlebone and hdpe-red coral composites. Journal of Bionic Engineering, 16, 1068–1079.

    Article  Google Scholar 

  41. Gibson, L. J., Ashby, M. F., & Harly, B. A. (2010). Cellular materials in nature and medicine (pp. 300–320). Cambridge University Press.

    Google Scholar 

  42. Hermán, V., González, G., Noris-Suárez, K., Albano, C., Karam, A., Romero, K., Yndriago, L., Marquez, A., & Lozada, L. (2015). Biocompatibility studies of hdpe–ha composites with different ha content. Polymer Bulletin, 72, 3083–3095.

    Article  Google Scholar 

  43. Hussein, A. A., Salim, R. D., & Sultan, A. A. (2015). Water absorption and mechanical properties of high—density polyethylene/egg shell composite. Journal of Basrah Researches, 37, 36–42.

    Google Scholar 

  44. Tasdemir, M., & Ersoy, S. (2014). Friction and wear performance of hdpe/talc-calcium carbonate polymer composites against sliding distance and applied load. Romanian Journal of Materials, 44, 257–264.

    Google Scholar 

  45. Yuan, S., Li, Y., Zhang, Q., Wen, J., & Zhu, Z. F. (2018). The tribological properties of pp/epdm/caco3 composites modified by hdpe. Conference Series: Materials Science and Engineering, 381, 1–5.

    Google Scholar 

  46. Denape, J. (2015). Third body concept and wear particle behavior in dry friction sliding conditions. Key Engineering Materials, 640, 1–12.

    Article  Google Scholar 

  47. Oladele, I. O., Olajide, J. L., & Amujede, M. (2016). Wear resistance and mechanical behaviour of epoxy/mollusk shell biocomposites developed for structural applications. Tribology in Industry, 38, 347–360.

    Google Scholar 

  48. Salari, M., Taromsari, S. M., Bagheri, R., & Sani, M. A. F. (2019). Improved wear, mechanical, and biological behavior of uhmwpe-hap-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement. Journal of Materials Science, 54, 4259–4276.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Monastir and the Ministry of Higher Education and Scientific Research—Tunisia for their support (LGM: LAB-MA-05). We would like to thank Mr. Didier VOILLEMIN, manager of the company C2T Implants for his great cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besma Sidia.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidia, B., Bensalah, W. Tribological and Physicochemical Analysis of Squid Pen High-density Polyethylene Biocomposite for Medical Application. J Bionic Eng 19, 1481–1492 (2022). https://doi.org/10.1007/s42235-022-00217-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00217-w

Keywords

Navigation