Skip to main content
Log in

An Efficient Hybrid Model Based on Modified Whale Optimization Algorithm and Multilayer Perceptron Neural Network for Medical Classification Problems

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Feedforward Neural Network (FNN) is one of the most popular neural network models that is utilized to solve a wide range of nonlinear and complex problems. Several models such as stochastic gradient descent have been developed to train FNNs. However, they mainly suffer from falling into local optima leading to reduce the accuracy of FNNs. Moreover, the convergence speed of training process depends on the initial values of weights and biases in FNNs. Generally, these values are randomly determined by most of the training models. To deal with these issues, in this paper, we develop a novel evolutionary algorithm by modifying the original version of Whale Optimization Algorithm (WOA). To this end, a nonlinear function is introduced to improve the exploration and exploitation phases in the search process of WOA. Then, the modified WOA is applied to automatically obtain the initial values of weights and biases in FNN leading to reduce the probability of falling into local optima. In addition, the FNN model trained by the modified WOA is used to develop a classification approach for medical diagnosis problems. Ten medical diagnosis datasets are utilized to evaluate the efficiency of the proposed method. Also, four evaluation metrics including accuracy, AUC, specificity, and sensitivity are used in the experiments to compare the performance of classification models. The experimental results demonstrate that the proposed method is better than other competing classification models due to achieving higher values of accuracy, AUC, specificity, and sensitivity metrics for the used datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the datasets used in this paper are publicly available. The links/references to access these datasets are provided in this paper.

Notes

  1. https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State.

  2. https://archive.ics.uci.edu/ml/datasets/.

  3. https://www.kaggle.com/sulianova/cardiovascular-disease-dataset.

  4. https://www.kaggle.com/fedesoriano/stroke-prediction-dataset.

References

  1. Shahid, N., Rappon, T., & Berta, W. (2019). Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS ONE, 14(2), 1–22.

    Article  Google Scholar 

  2. Dharwal, R., & Kaur, L. (2016). Applications of artificial neural networks: A review. Indian Journal of Science and Technology., 9(47), 1–8.

    Article  Google Scholar 

  3. Ahmadian, S., & Khanteymoori, A. R. (2015). Training back propagation neural networks using asexual reproduction optimization. 2015 7th Conference on Information and Knowledge Technology (IKT). Urmia: IEEE, p. 1–6.

  4. Ojha, V. K., Abraham, A., & Snášel, V. (2017). Metaheuristic design of feedforward neural networks: A review of two decades of research. Engineering Applications of Artificial Intelligence., 60, 97–116.

    Article  Google Scholar 

  5. Jalali, S. M. J., Ahmadian, S., Khosravi, A., Mirjalili, S., Mahmoudi, M. R., & Nahavandi, S. (2020). Neuroevolution-based autonomous robot navigation: A comparative study. Cognitive Systems Research., 62, 35–43.

    Article  Google Scholar 

  6. Heidari, A. A., Faris, H., Aljarah, I., & Mirjalili, S. (2019). An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Computing., 23(17), 7941–7958.

    Article  Google Scholar 

  7. Liu, Y., Chong, G., Heidari, A. A., Chen, H., Liang, G., Ye, X., Cai, Z., & Wang, M. (2020). Horizontal and vertical crossover of Harris hawk optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models. Energy Conversion and Management., 223, 113211.

    Article  Google Scholar 

  8. Jalali, S. M. J., Khodayar, M., Ahmadian, S., Shafie-Khah, M., Khosravi, A., Islam, S. M. S., Nahavandi, S., & Catalão, J. P. S. (2021). A new ensemble reinforcement learning strategy for solar irradiance forecasting using deep optimized convolutional neural network models. 2021 International Conference on Smart Energy Systems and Technologies (SEST). Finland: IEEE, p. 1–6.

  9. Jalali, S. M. J., Osório, G. J., Ahmadian, S., Lotfi, M., Campos, V. M., Shafie-khah, M., Khosravi, A., & Catalão, J. P. S. (2021). New hybrid deep neural architectural search-based ensemble reinforcement learning strategy for wind power forecasting. IEEE Transactions on Industry Applications., 58(1), 15–27.

    Article  Google Scholar 

  10. Jalali, S. M. J., Ahmadian, S., Noman, M. K., Khosravi, A., Islam, S. M. S., Wang, F., & Catalão, J. P. S. (2022). A new uncertainty-aware deep neuroevolution model for quantifying tidal prediction. IEEE Transactions on Industry Applications., 1, 1–10.

    Google Scholar 

  11. Jalali, S. M. J., Ahmadian, S., Khodayar, M., Khosravi, A., Shafie-khah, M., Nahavandi, S., & Catalão, J. P. S. (2022). An advanced short-term wind power forecasting framework based on the optimized deep neural network models. International Journal of Electrical Power & Energy Systems., 141, 108143.

    Article  Google Scholar 

  12. Jalali, S. M. J., Ahmadian, S., Khodayar, M., Khosravi, A., Ghasemi, V., Shafie-khah, M., Nahavandi, S., & Catalão, J. P. S. (2021). Towards novel deep neuroevolution models: Chaotic levy grasshopper optimization for short-term wind speed forecasting. Engineering with Computers, 1, 1–25.

    Google Scholar 

  13. Jalali, S. M. J., Ahmadian, S., Khosravi, A., Shafie-khah, M., Nahavandi, S., & Catalao, J. P. S. (2021). A novel evolutionary-based deep convolutional neural network model for intelligent load forecasting. IEEE Transactions on Industrial Informatics., 17(12), 8243–8253.

    Article  Google Scholar 

  14. Jalali, S. M. J., Ahmadian, M., Ahmadian, S., Khosravi, A., Alazab, M., & Nahavandi, S. (2021). An oppositional-Cauchy based GSK evolutionary algorithm with a novel deep ensemble reinforcement learning strategy for COVID-19 diagnosis. Applied Soft Computing., 111, 107675.

    Article  Google Scholar 

  15. Jalali, S. M. J., Ahmadian, S., Kavousi-Fard, A., Khosravi, A., & Nahavandi, S. (2021). Automated deep CNN-LSTM architecture design for solar irradiance forecasting. IEEE Transactions on Systems, Man, and Cybernetics: Systems., 52(1), 54–65.

    Article  Google Scholar 

  16. Mousavirad, S. J., Jalali, S. M. J., Ahmadian, S., Khosravi, A., Schaefer, G., & Nahavandi, S. (2020). Neural network training using a biogeography-based learning strategy. International Conference on Neural Information Processing (pp. 147–155). Bangkok. Thailand: Springer

  17. Zhong, J., Li, B., Li, S., Yang, F., Li, P., & Cui, Y. (2021). Particle swarm optimization with orientation angle-based grouping for practical unmanned surface vehicle path planning. Applied Ocean Research, 111, 102658.

    Article  Google Scholar 

  18. Zhang, L., & Zhao, L. (2021). High-quality face image generation using particle swarm optimization-based generative adversarial networks. Future Generation Computer Systems., 122, 98–104.

    Article  Google Scholar 

  19. Li, M., Yang, S. P., & Zhang, M. Q. (2021). Power supply system scheduling and clean energy application based on adaptive chaotic particle swarm optimization. Alexandria Engineering Journal, 1, 1–14.

    Google Scholar 

  20. Chaleshtarti, A. S., Shadrokh, S., Khakifirooz, M., Fathi, M., & Pardalos, P. M. (2020). A hybrid genetic and Lagrangian relaxation algorithm for resource-constrained project scheduling under nonrenewable resources. Applied Soft Computing., 94, 106482.

    Article  Google Scholar 

  21. Tahmasebi, F., Meghdadi, M., Ahmadian, S., & Valiallahi, K. (2021). A hybrid recommendation system based on profile expansion technique to alleviate cold start problem. Multimedia Tools and Applications., 80(2), 2339–2354.

    Article  Google Scholar 

  22. Ahmadian, S., Moradi, P., & Akhlaghian, F. (2014). An improved model of trust-aware recommender systems using reliability measurements. 2014 6th Conference on Information and Knowledge Technology (IKT). Tehran: IEEE, p. 98–103.

  23. Moradi, P., Rezaimehr, F., Ahmadian, S., & Jalili, M. (2016). A trust-aware recommender algorithm based on users overlapping community structure. 2016 sixteenth international conference on advances in ICT for emerging regions (ICTer). Negombo, Sri Lanka: IEEE, p. 162–167

  24. Ahmadian, S., Meghdadi, M., & Afsharchi, M. (2018). Incorporating reliable virtual ratings into social recommendation systems. Applied Intelligence., 48(11), 4448–4469.

    Article  Google Scholar 

  25. Rahmani, H. A., Aliannejadi, M., Ahmadian, S., Baratchi, M., Afsharchi, M., Crestani, F. (2019). LGLMF: Local geographical based logistic matrix factorization model for POI recommendation. Asia Information Retrieval Symposium, AIRS 2019. Hong Kong, China: Springer, p. 66–78.

  26. Ahmadian, S., Joorabloo, N., Jalili, M., Meghdadi, M., Afsharchi, M., Ren, Y. (2018). A temporal clustering approach for social recommender systems. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Barcelona, Spain: IEEE, p. 1139–1144.

  27. Ahmadian, S., Afsharchi, M., & Meghdadi, M. (2019). An effective social recommendation method based on user reputation model and rating profile enhancement. Journal of Information Science., 45(5), 607–642.

    Article  Google Scholar 

  28. Ahmadian, S., Afsharchi, M., & Meghdadi, M. (2019). A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems. Multimedia Tools and Applications., 78(13), 17763–17798.

    Article  Google Scholar 

  29. Yengikand, A. K., Meghdadi, M., Ahmadian, S., Jalali, S. M. J., Khosravi, A., Nahavandi, S. (2021). Deep representation learning using multilayer perceptron and stacked autoencoder for recommendation systems. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Melbourne, Australia: IEEE, p. 2485–2491.

  30. Ahmadian, M., Ahmadi, M., & Ahmadian, S. (2022). A reliable deep representation learning to improve trust-aware recommendation systems. Expert Systems with Applications., 197, 116697.

    Article  Google Scholar 

  31. Ahmadian, M., Ahmadi, M., Ahmadian, S., Jalali, S. M. J., Khosravi, A., & Nahavandi, S. (2021). Integration of deep sparse autoencoder and particle swarm optimization to develop a recommender system. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Melbourne, Australia: IEEE, p. 2524–2530.

  32. Ahmadian, S., Ahmadian, M., & Jalili, M. (2022). A deep learning based trust-and tag-aware recommender system. Neurocomputing, 488, 557–571.

    Article  Google Scholar 

  33. Ahmadian, S., Joorabloo, N., Jalili, M., & Ahmadian, M. (2022). Alleviating data sparsity problem in time-aware recommender systems using a reliable rating profile enrichment approach. Expert Systems with Applications., 187, 115849.

    Article  Google Scholar 

  34. Ahmadian, S., Joorabloo, N., Jalili, M., Ren, Y., Meghdadi, M., & Afsharchi, M. (2020). A social recommender system based on reliable implicit relationships. Knowledge-Based Systems., 192, 105371.

    Article  Google Scholar 

  35. Ahmadian, S., Meghdadi, M., & Afsharchi, M. (2018). A social recommendation method based on an adaptive neighbor selection mechanism. Information Processing & Management., 54(4), 707–725.

    Article  Google Scholar 

  36. Jalali, S. M. J., Khosravi, A., Alizadehsani, R., Salaken, S. M., Kebria, P. M., Puri, R., & Nahavandi S. (2019). Parsimonious evolutionary-based model development for detecting artery disease. 2019 IEEE International Conference on Industrial Technology (ICIT). Melbourne, Australia: IEEE, p. 800–805.

  37. Ahmadian, S., Jalali, S. M. J., Islam, S. M. S., Khosravi, A., Fazli, E., & Nahavandi, S. (2021). A novel deep neuroevolution-based image classification method to diagnose coronavirus disease (COVID-19). Computers in Biology and Medicine., 139, 104994.

    Article  Google Scholar 

  38. Ahmadian, S., Jalali, S. M. J., Raziani, S., & Chalechale, A. (2022). An efficient cardiovascular disease detection model based on multilayer perceptron and moth-flame optimization. Expert Systems., 39(4), 1–19.

    Article  Google Scholar 

  39. Jalali, S. M. J., Ahmadian, M., Ahmadian, S., Hedjam, R., Khosravi, A., & Nahavandi, S. (2022). X-ray image based COVID-19 detection using evolutionary deep learning approach. Expert Systems with Applications., 201, 116942.

    Article  Google Scholar 

  40. Xia, J. F., Zhang, H. L., Li, R. Z., Chen, H. L., Turabieh, H., Mafarja, M., & Pan, Z. F. (2021). Generalized oppositional moth flame optimization with crossover strategy: An approach for medical diagnosis. Journal of Bionic Engineering, 18, 991–1010.

    Article  Google Scholar 

  41. Razmjooy, N., Sheykhahmad, F. R., & Ghadimi, N. (2018). A hybrid neural network - world cup optimization algorithm for melanoma detection. Open Medicine., 13, 9–16.

    Article  Google Scholar 

  42. Xu, Z., Sheykhahmad, F. R., Ghadimi, N., & Razmjooy, N. (2020). Computer-aided diagnosis of skin cancer based on soft computing techniques. Open Medicine., 15(1), 860–871.

    Article  Google Scholar 

  43. Parsian, A., Ramezani, M., & Ghadimi, N. (2017). A hybrid neural network-gray wolf optimization algorithm for melanoma detection. Biomedical Research., 28(8), 3408–3411.

    Google Scholar 

  44. Ridha, H. M., Gomes, C., Hizam, H., Ahmadipour, M., Heidari, A. A., & Chen, H. (2021). Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review. Renewable and Sustainable Energy Reviews., 135, 110202.

    Article  Google Scholar 

  45. Mirjalili, S., Hashim, S. Z. M., & Sardroudi, H. M. (2012). Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Applied Mathematics and Computation., 218(22), 11125–11137.

    Article  MathSciNet  MATH  Google Scholar 

  46. Gupta, J. N., & Sexton, R. S. (1999). Comparing backpropagation with a genetic algorithm for neural network training. Omega, 27(6), 679–684.

    Article  Google Scholar 

  47. Ding, S. F., Su, C. Y., & Yu, J. Z. (2011). An optimizing BP neural network algorithm based on genetic algorithm. Artificial Intelligence Review., 36(2), 153–162.

    Article  Google Scholar 

  48. Subudhi, B., & Jena, D. (2011). A differential evolution based neural network approach to nonlinear system identification. Applied Soft Computing., 11(1), 861–871.

    Article  Google Scholar 

  49. Asteris, P. G., & Nikoo, M. (2019). Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Computing and Applications., 31(9), 4837–4847.

    Article  Google Scholar 

  50. ElSaid, A., El Jamiy, F., Higgins, J., Wild, B., & Desell, T. (2018). Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration. Applied Soft Computing., 73, 969–991.

    Article  Google Scholar 

  51. Gandomi, A. H., Yang, X., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers., 29, 17–35.

    Article  Google Scholar 

  52. Zhang, Y. D., Phillips, P., Wang, S. W., Ji, G. L, Yang, J. Q., & Wu, J. G. (2016). Fruit classification by biogeography-based optimization and feedforward neural network. Expert Systems., 33(3), 239–253.

    Article  Google Scholar 

  53. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation., 1(1), 67–82.

    Article  Google Scholar 

  54. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software., 95, 51–67.

    Article  Google Scholar 

  55. Chakraborty, S., Saha, A. K., Sharma, S., Mirjalili, S., & Chakraborty, R. (2021). A novel enhanced whale optimization algorithm for global optimization. Computers & Industrial Engineering., 153, 107086.

    Article  Google Scholar 

  56. Chen, H., Li, W. D., & Yang, X. (2020). A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Systems with Applications., 158, 113612.

    Article  Google Scholar 

  57. Agrawal, U., Arora, J., Singh, R., Gupta, D., Khanna, A., & Khamparia, A. (2020). Hybrid wolf-bat algorithm for optimization of connection weights in multi-layer perceptron. ACM Transactions on Multimedia Computing, Communications, and Applications., 16, 1–15.

    Article  Google Scholar 

  58. Jentzen, A., Kuckuck, B., Neufeld, A., & Wurstemberger, P. (2021). Strong error analysis for stochastic gradient descent optimization algorithms. IMA Journal of Numerical Analysis., 41(1), 455–492.

    Article  MathSciNet  MATH  Google Scholar 

  59. Bock, S., & Weiß, M. (2019). A proof of local convergence for the Adam optimizer. 2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary: IEEE, p. 1–8.

  60. Opara, K. R., & Arabas, J. (2019). Differential evolution: A survey of theoretical analyses. Swarm and Evolutionary Computation., 44, 546–558.

    Article  Google Scholar 

  61. Mendes, R., Cortez, P., Rocha, M., & Neves, J. (2002). Particle swarms for feedforward neural network training. Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN'02). Honolulu, Hawaii, USA: IEEE, p. 1895–1899.

  62. Mirjalili, S., Dong, J. S., Sadiq, A. S., & Faris, H. (2020). Genetic algorithm: Theory, literature review, and application in image reconstruction. Nature-Inspired Optimizers (pp. 69–85). Springer.

  63. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software., 69, 46–61.

    Article  Google Scholar 

  64. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-based Systems., 96, 120–133.

    Article  Google Scholar 

  65. Yang, X.-S., & He, X. (2013). Firefly algorithm: Recent advances and applications. International Journal of Swarm Intelligence., 1(1), 36–50.

    Article  Google Scholar 

  66. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software., 114, 163–191.

    Article  Google Scholar 

  67. Shanker, M. S. (1996). Using neural networks to predict the onset of diabetes mellitus. Journal of Chemical Information and Computer Sciences., 36(1), 35–41.

    Article  Google Scholar 

  68. Elter, M., Schulz-Wendtland, R., & Wittenberg, T. (2007). The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Medical Physics., 34(11), 4164–4172.

    Article  Google Scholar 

  69. Islam, M. F., Ferdousi, R., Rahman, S., & Bushra, H. Y. (2020). Likelihood prediction of diabetes at early stage using data mining techniques. Computer Vision and Machine Intelligence in Medical Image Analysis (pp. 113–125). Springer.

  70. Thabtah, F., & Peebles, D. (2020). A new machine learning model based on induction of rules for autism detection. Health Informatics Journal., 26(1), 264–286.

    Article  Google Scholar 

  71. Kent, E. C., Burgess, G. H., & Kilbey, E. (2018). Using the AQ-10 with adults who have a borderline or mild intellectual disability: Pilot analysis of an adapted AQ-10 (AQ-10-Intellectual Disability). Research in Autism Spectrum Disorders., 54, 65–75.

    Article  Google Scholar 

  72. Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical Psychology., 44(1), 108–132.

    Article  MathSciNet  MATH  Google Scholar 

  73. Wong, T.-T. (2015). Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition., 48(9), 2839–2846.

    Article  MATH  Google Scholar 

  74. Jalali, S. M. J., Ahmadian, S., Kebria, P. M., Khosravi, A., Lim, C. P., & Nahavandi, S. (2019). Evolving artificial neural networks using butterfly optimization algorithm for data classification. International Conference on Neural Information Processing. Bangkok, Thailand: Springer, p. 596–607.

  75. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks., 2(5), 359–366.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Ahmadian.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raziani, S., Ahmadian, S., Jalali, S.M.J. et al. An Efficient Hybrid Model Based on Modified Whale Optimization Algorithm and Multilayer Perceptron Neural Network for Medical Classification Problems. J Bionic Eng 19, 1504–1521 (2022). https://doi.org/10.1007/s42235-022-00216-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00216-x

Keywords

Navigation