Skip to main content
Log in

A Novel Movement Behavior Control Method for Carp Robot through the Stimulation of Medial Longitudinal Fasciculus Nucleus of Midbrain

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Biological robot is a kind of creature controlled by human beings by applying intervention signals through control technology to regulate biological behavior. At present, the research on bio-robot mainly focuses on terrestrial mammals and insects, while the research on aquatic animal robot is less. Early studies have shown that the medial longitudinal fasciculus nucleus (NFLM) of carp midbrain was related to tail wagging, but the research has not been applied to the navigation control of the carp robot. The purpose of this study is to realize the quantitative control of the forward and steering behavior of the carp robot by NFLM electrical stimulation. Under the condition of no craniotomy, brain electrode was implanted into the NFLM of the carp midbrain, and the underwater control experiment was carried out by applying different electrical stimulation parameters. Using the ImageJ software and self-programmed, the forward motion speed and steering angle of steering motion of the carp robot before and after being stimulated were calculated. The experimental results showed for the carp robot that was induced the steering motion, the left and right steering motion of 30° to 150° could be achieved by adjusting the stimulation parameters, for the carp robot that was induced the forward motion, the speed of forward motion could be controlled to reach 100 cm/s. The research lays a foundation for the accurate control of the forward and steering motion of the aquatic animal robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ahmadi, A., Behroozi, M., Shalchyan, V., & Daliri, M. R. (2019). Rat navigation by stimulating somatosensory cortex. Journal of Bionic Engineering., 16, 931–942.

    Article  Google Scholar 

  2. Yu, Y. P., Wu, Z. H., Xu, K. D., Gong, Y. Y., Zheng, N. G., Zheng, X. X., & Pan, G. (2016). Automatic training of rat cyborgs for navigation. Computational Intelligence and Neuroscience., 2016, 1–12.

    Article  Google Scholar 

  3. Talwar, S. K., Xu, S. H., Hawley, E. S., Weiss, S. A., Moxon, K. A., & Chapin, J. K. (2002). Rat navigation guided by remote control. Nature, 417, 37–38.

    Article  Google Scholar 

  4. Yu, Y. P., Pan, G., Gong, Y. Y., Xu, K. D., Zheng, N. G., Hua, W. D., Zheng, X. X., & Wu, Z. H. (2016). Intelligence-augmented rat cyborgs in maze solving. PLoS One, 11, 1–18.

    Google Scholar 

  5. Koh, C. S., Park, H. Y., Shin, J., Kong, C., Park, M., Seo, I. S., Koo, B., Jung, H., Chang, J., & Shin, H. C. (2020). A novel rat robot controlled by electrical stimulation of the nigrostriatal pathway. Neurosurgical Focus., 49, E11.

    Article  Google Scholar 

  6. Daly, D. C., Mercier, P. P., Bhardwaj, M., Stone, A. L., Aldworth, Z. N., Daniel, T. L., Voldman, J., Hildebrand, J. G., & Chandrakasan, A. P. (2010). A pulsed UWB receiver SoC for insect motion control. IEEE Journal of Solid-State Circuits., 45, 153–166.

    Article  Google Scholar 

  7. Sanchez, C. J., Chiu, C. W., Zhou, Y., González, J. M., Vinson, S. B., & Liang, H. (2015). Locomotion control of hybrid cockroach robots. Journal of the Royal Society Interface., 12, 1–9.

    Article  Google Scholar 

  8. Kajiura, S. M., & Fitzgerald, T. P. (2009). Response of juvenile scalloped hammerhead sharks to electric stimuli. Zoology., 112, 241–250.

    Article  Google Scholar 

  9. Kim, D. G., Lee, S., Kim, C. H., Jo, S., & Lee, P. S. (2017). Parasitic robot system for waypoint navigation of turtle. Journal of Bionic Engineering., 14, 327–335.

    Article  Google Scholar 

  10. Kim, C. H., Choi, B., Kim, D. G., Lee, S., Jo, S., & Lee, P. S. (2016). Remote Navigation of turtle by controlling instinct behavior via human brain-computer interface. Journal of Bionic Engineering., 13, 491–503.

    Article  Google Scholar 

  11. Wang, W. B., Guo, C., Sun, J. R., & Dai, Z. D. (2009). Locomotion elicited by electrical stimulation in the midbrain of the lizard gekko gecko. Studies in Computational Intelligence., 192, 145–153.

    Google Scholar 

  12. Wang, H., Yang, J. Q., Lv, C. Z., Huai, R. T., & Li, Y. X. (2018). Intercollicular nucleus electric stimulation encoded “walk forward” commands in pigeons. Animal Biology., 68, 1–13.

    Article  Google Scholar 

  13. Eklöf-Ljunggren, E., Haupt, S., Ausborn, J., Dehnisch, I., Uhlén, P., Higashijima, S., & Manira, A. E. (2012). Origin of excitation underlying locomotion in the spinal circuit of zebrafish. Proceedings of the National Academy of Sciences of the United States of America., 109, 5511–5516.

    Article  Google Scholar 

  14. Uematsu, K., Baba, Y., Kake, Y., Ikenaga, T., Moon, S. J., Miyai, Y., & Yoshida, M. (2007). Central mechanisms underlying fish swimming. Brain Behavior and Evolution., 69, 142–150.

    Article  Google Scholar 

  15. Oka, Y., Satou, M., & Ueda, K. (1986). Descending pathways to the spinal cord in the himé salmon (landlocked red salmon, Oncorhynchus nerka). Journal of Comparative Neurology., 254, 91–103.

    Article  Google Scholar 

  16. Rao, D., Jadhao, A. G., & Sharma, S. C. (1987). Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. Journal of Comparative Neurology., 265, 96–108.

    Article  Google Scholar 

  17. Becker, T., Wullimann, M. F., Becker, C. G., Bernhardt, R. R., & Schachner, M. (1997). Axonal regrowth after spinal cord transection in adult zebrafish. Journal of Comparative Neurology., 377, 577–595.

    Article  Google Scholar 

  18. Baba, Y., Kake, Y., Yoshida, M., & Uematsu, K. (2003). Activities of mesencephalic nucleus neurons during fictive swimming of the carp Cyprinus carpio. Fisheries Science., 69, 581–588.

    Article  Google Scholar 

  19. Uematsu, K., & Todo, T. (1997). Identification of the midbrain locomotor nuclei and their descending pathways in the teleost carp, Cyprinus carpio. Brain Research., 773, 1–7.

    Article  Google Scholar 

  20. Lee, R. K., Eaton, R. C., & Zottoli, S. J. (1993). Segmental arrangement of reticulospinal neurons in the goldfish hindbrain. Journal of Comparative Neurology., 329, 539–556.

    Article  Google Scholar 

  21. Zhang, C., Liu, J. Q., Tian, H. C., Kang, X. Y., Rui, Y. F., Yang, B., Zhu, H. Y., & Sheng, Y. C. (2013). Control of swimming in crucian carp: Stimulation of the brain using an implantable wire electrode. The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Suzhou, China, 360–363.

  22. Kobayashi, N., Yoshida, M., Matsumoto, N., & Uematsu, K. (2009). Artificial control of swimming in goldfish by brain stimulation: Confirmation of the midbrain nuclei as the swimming center. Neuroscience Letters., 452, 42–46.

    Article  Google Scholar 

  23. Pandey, A. K. (2005). Recent advances in fish pheromone research with emphasis on their potential applications in fisheries. Journal of Applied Animal Research, 16, 210–216.

    Google Scholar 

  24. Svensson, O., Bellamy, A. S., Van den Brink, P. J., Tedengren, M., & Gunnarsson, J. S. (2018). Assessing the ecological impact of banana farms on water quality using aquatic macroinvertebrate community composition. Environmental Science and Pollution Research., 25, 13373–13381.

    Article  Google Scholar 

  25. Peng, Y., Wang, T. T., Yan, Y. H., Chen, Z. W., Wen, S. H., Han, X. X., Zhao, Y., Liu, J. N., & Zhang, Q. (2019). Design and application of wireless remote-control system for carp robot. Chinese Journal of Biomedical Engineering., 38, 59–65.

    Google Scholar 

  26. Peng, Y., Han, X. X., Wang, T. T., Liu, Y., Yan, Y. H., Liu, J. N., Zhang, F., & Su, Y. Y. (2018). Water maze for testing the motion of aquatic animal robot. Journal of Biomedical Engineering., 35, 429–434.

    Google Scholar 

  27. Fouriezos, G., & Wise, R. A. (1984). Current-distance relation for rewarding brain stimulation. Behavioural Brain Research., 14, 85–89.

    Article  Google Scholar 

  28. Yeomans, J. S., Prior, P., & Bateman, F. (1986). Current-distance relations of axons mediating circling elicited by midbrain stimulation. Brain Research., 372, 95–106.

    Article  Google Scholar 

  29. Xu, K. D., Zhang, J. C., Zhou, H., Lee, T., & Zheng, X. X. (2016). A novel turning behavior control method for rat-robot through the stimulation of ventral posteromedial thalamic nucleus. Behavioural Brain Research., 298, 150–157.

    Article  Google Scholar 

  30. Gallistel, C. R., Shizgal, P., & Yeomans, J. S. (1981). A portrait of the substrate for self-stimulation. Psychological Review., 88, 228–273.

    Article  Google Scholar 

  31. Gallistel, C. R. (1978). Self-stimulation in the rat: Quantitative characteristics of the reward pathway. Journal of Comparative & Physiological Psychology., 92, 977–998.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Project of National Natural Science Foundation of China (project number: 61573305), Project of Natural Science Foundation of Hebei Province of China (project number: F2019203511), National High-Tech Research and Development Plan of China (863 Plan) Project (2013AA****) Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Peng.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 kb)

Supplementary file2 (MP4 113112 kb)

Supplementary file3 (MP4 245473 kb)

Supplementary file4 (MP4 200060 kb)

Supplementary file5 (MP4 198995 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Peng, Y., Wen, Y. et al. A Novel Movement Behavior Control Method for Carp Robot through the Stimulation of Medial Longitudinal Fasciculus Nucleus of Midbrain. J Bionic Eng 19, 1302–1313 (2022). https://doi.org/10.1007/s42235-022-00211-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00211-2

Keywords

Navigation