Skip to main content
Log in

Formation of Nanotubular Structures with Petal Effect by Soft-Template Electropolymerization of Benzotrithiophene with Hydrophilic Carboxyl Group

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The bioinspiration is one of the best ways to make a breakthrough in a field, and particularly in the wetting properties. Bioinspired by natural species, such as rose petals and gecko foot, and previous researches, nanotubular structures are prepared here by soft-template electropolymerization in organic solvent and using an original benzotrithiophene with a hydrophilic carboxyl group, as the monomer. The best results are obtained by cyclic voltammetry because of a much higher amount of gas bubbles released with this deposition method. Both nanoparticles and nanotubes are observed while the water content has an influence on the number of nanotubes. Even if the monomer has hydrophilic carboxyl group, the best films have both high hydrophobicity (apparent water contact angle up to 130.7°) and strong water adhesion (petal effect). These surfaces could be used in future in applications such as water harvesting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this article are available in Journal of Bionic Engineering website (Springer) with the DOI of the article.

References

  1. Peigney, A. (2003). Tougher ceramics with nanotubes. Nature Materials, 2, 15–16.

    Google Scholar 

  2. Montjoy, D. G., Hou, H., Bahng, J. H., & Kotov, N. A. (2020). Omnidispersible microscale colloids with nanoscale polymeric spikes. Chemistry of Materials, 32, 9897–9905.

    Google Scholar 

  3. Su, S., Wu, W. H., Gao, J. M., Lu, J. X., & Fan, C. H. (2012). Nanomaterials-based sensors for applications in environmental monitoring. Journal of Materials Chemistry, 22, 18101–18110.

    Google Scholar 

  4. Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20, 101–124.

    Google Scholar 

  5. Pomerantseva, E., Bonaccorso, F., Feng, X. L., Cui, Y., & Gogotsi, Y. (2019). Energy storage: The future enabled by nanomaterials. Science, 366, 6468.

    Google Scholar 

  6. Ai, J. X., & Guo, Z. G. (2019). Biomimetic polymeric superamphiphobic surfaces: Their fabrication and applications. Chemical Communications, 55, 10820–10843.

    Google Scholar 

  7. Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials Today, 18, 273–285.

    Google Scholar 

  8. Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C., & Barthlott, W. (2011). Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2, 152–161.

    Google Scholar 

  9. Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551.

    Google Scholar 

  10. Ge, L., Sethi, S., Ci, L., Ajayan, P. M., & Dhinojwala, A. (2007). Carbon nanotube-based synthetic gecko tapes. Proceedings of the National Academy of Sciences of the United States of America, 104, 10792–10795.

    Google Scholar 

  11. Feng, L., Zhang, Y., Xi, J. M., Zhu, Y., Wang, N., Xia, F., & Jiang, L. (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 24, 4114–4119.

    Google Scholar 

  12. Bhushan, B., & Nosonovsky, M. (2010). The rose petal effect and the modes of superhydrophobicity. Philosophical Transactions of the Royal Society A, 368, 4713–4728.

    MathSciNet  MATH  Google Scholar 

  13. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28, 988–994.

    Google Scholar 

  14. Marmur, A. (2012). Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification. Soft Matter, 8, 6867–6870.

    Google Scholar 

  15. Marmur, A. (2004). The lotus effect: Superhydrophobicity and metastability. Langmuir, 20, 3517–3519.

    Google Scholar 

  16. Cheng, Z. J., Gao, J., & Jiang, L. (2010). Tip geometry controls adhesive states of superhydrophobic surfaces. Langmuir, 26, 8233–8238.

    Google Scholar 

  17. Huang, J. Y., Zhang, K. Q., & Lai, Y. K. (2013). Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: A review. International Journal of Photoenergy. https://doi.org/10.1155/2013/761971

    Article  Google Scholar 

  18. Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H., & Gleason, K. K. (2003). Superhydrophobic carbon nanotube forests. Nano Letters, 3, 1701–1705.

    Google Scholar 

  19. Lai, Y. K., Pan, F., Xu, C., Fuchs, H., & Chi, L. F. (2013). In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Advanced Materials, 25, 1682–1686.

    Google Scholar 

  20. Lai, Y. K., Gao, X. F., Zhuang, H. F., Huang, J. Y., Lin, C. J., & Jiang, L. (2013). Designing superhydrophobic porous nanostructures with tunable water adhesion. Advanced Materials, 25, 1682–1686.

    Google Scholar 

  21. Zhang, S. N., Huang, J. Y., Tang, Y. X., Li, S. H., Ge, M. Z., Chen, Z., Zhang, K. Q., & Lai, Y. K. (2017). Understanding the role of dynamic wettability for condensate microdrop self-propelling based on designed superhydrophobic TiO2 nanostructures. Small (Weinheim an der Bergstrasse, Germany), 13, 1600687.

    Google Scholar 

  22. Lin, H. A., Luo, S. C., Zhu, B., Chen, C., Yamashita, Y., & Yu, H. H. (2013). Molecular or nanoscale structures? The deciding factor of surface properties on functionalized poly(3,4-ethylenedioxythiophene) nanorod arrays. Advanced Functional Materials, 23, 3212–3219.

    Google Scholar 

  23. Ai, S. F., Lu, G., He, Q., & Li, J. B. (2003). Highly flexible polyelectrolyte nanotubes. Journal of the American Chemical Society, 125, 11140–11141.

    Google Scholar 

  24. Kawamura, G., Muto, H., & Matsuda, A. (2014). Hard template synthesis of metal nanowires. Frontiers in Chemistry, 2, 104.

    Google Scholar 

  25. Fakhry, A., Cachet, H., & Debiemme-Chouvy, C. (2015). Mechanism of formation of templateless electrogenerated polypyrrole nanostructures. Electrochimica Acta, 179, 297–303.

    Google Scholar 

  26. Gupta, S. (2008). Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: Structural and physical property characterization. Journal of Raman Spectroscopy, 39, 1343–1355.

    Google Scholar 

  27. Kim, J. T., Seol, S. K., Je, J. H., Hwu, Y., & Margaritondo, G. (2009). The microcontainer shape in electropolymerization on bubbles. Applied Physical Letters, 94, 034103.

    Google Scholar 

  28. Qu, L., Shi, G., Chen, F., & Zhang, J. (2003). Electrochemical growth of polypyrrole microcontainers. Macromolecules, 36, 1063–1067.

    Google Scholar 

  29. Parakhonskiy, B., Andreeva, D., Moehwald, H., & Shchukin, D. G. (2009). Hollow polypyrrole containers with regulated uptake/release properties. Langmuir, 25, 4780–4786.

    Google Scholar 

  30. Sane, O., Diouf, A., Morán Cruz, G., Savina, F., Méallet-Renault, R., Amigoni, S., Dieng, S. Y., Guittard, F., & Darmanin, T. (2019). Coral-like nanostructures. Materials Today, 31, 119–120.

    Google Scholar 

  31. Sathanikan, A., Ceccone, G., Bañuls-Ciscar, J., Pan, M., Kamal, F., Bsaibess, T., Gaucher, A., Prim, D., Méallet-Renault, R., Colpo, P., Amigoni, S., Guittard, F., & Darmanin, T. (2022). A bioinspired approach to fabricate fluorescent nanotubes with strong water adhesion by soft template electropolymerization and post-grafting. Journal of Colloid and Interface Science, 606, 236–247.

    Google Scholar 

  32. Fradin, C., Guittard, F., & Darmanin, T. (2021). A soft template approach to various porous nanostructures from conjugated carbazole-based monomers. Journal of Colloid and Interface Science, 584, 795–803.

    Google Scholar 

  33. Fradin, C., Orange, F., Amigoni, S., Szczepanski, C. R., Guittard, F., & Darmanin, T. (2021). Micellar formation by soft template electropolymerization in organic solvents. Journal of Colloid and Interface Science, 590, 260–267.

    Google Scholar 

  34. Levieux-Souid, Y., Sathanikan, A., Orange, F., Guittard, F., & Darmanin, T. (2021). Densely packed open microspheres by soft template electropolymerization of benzotrithiophene-based monomers. Electrochimica Acta, 369, 137677.

    Google Scholar 

  35. Sow, S., Dihissou, S., Dramé, A., Sene, A., Dieng, S. Y., Guittard, F., & Darmanin, T. (2022). Tunable nanotubular structures with rose petal effect by soft-template electropolymerization of benzotrithiophene monomers. ChemistrySelect, 7, e202200354.

    Google Scholar 

  36. Ringk, A., Lignie, A., Hou, Y., Alshareef, H. N., & Beaujuge, P. M. (2016). Electropolymerized star-shaped benzotrithiophenes yield π-conjugated hierarchical networks with high areal capacitance. ACS Applied Materials and Interfaces, 8, 12091–12100.

    Google Scholar 

  37. Patra, D., Chiang, C. C., Chen, W. A., Wei, K. H., Wu, M. C., & Chu, C. W. (2013). Solution-processed benzotrithiophene-based donor molecules for efficient bulk heterojunction solar cells. Journal of Materials Chemistry A, 1, 7767–7774.

    Google Scholar 

  38. Ramos Chagas, G., Xie, X., Darmanin, T., Steenkeste, K., Gaucher, A., Prim, D., Méallet-Renault, R., Godeau, G., Amigoni, S., & Guittard, F. (2016). Electrodeposition of polypyrenes with tunable hydrophobicity, water adhesion and fluorescence properties. Journal of Physical Chemistry C, 120, 7077–7087.

    Google Scholar 

  39. Raufaste, C., Ramos Chagas, G., Darmanin, T., Claudet, C., Guittard, F., & Celestini, F. (2017). Superpropulsion of droplets and soft elastic solids. Physical Review Letters, 119, 108001.

    Google Scholar 

  40. Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87.

    Google Scholar 

  41. Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13, 1741–1747.

    Google Scholar 

  42. Darmanin, T., & Guittard, F. (2013). pH- and voltage-switchable superhydrophobic surfaces by electro-copolymerization of EDOT derivatives containing carboxylic acids and long alkyl chains. ChemPhysChem, 14, 2529–2533.

    Google Scholar 

  43. Ramos Chagas, G., Kiryanenko, D., Godeau, G., Guittard, F., & Darmanin, T. (2017). pH-driven wetting switchability of electrodeposited superhydrophobic copolymers of pyrene bearing acid functions and fluorinated chains. ChemPhysChem, 18, 3429–3436.

    Google Scholar 

  44. Luo, S. C., Sekine, J., Zhu, B., Zhao, H., Nakao, A., & Yu, H. H. (2012). Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: The effect of functional groups and temperature in template-free electropolymerization. ACS Nano, 6, 3018–3026.

    Google Scholar 

  45. Zhao, Y., Stejskal, J., & Wang, J. (2013). Towards directional assembly of hierarchical structures: Aniline oligomers as the model precursors. Nanoscale, 5, 2620–2626.

    Google Scholar 

  46. Darmanin, T., & Guittard, F. (2017). The major influence of the substrate nature on the formation of nanotubes with high water adhesion using a templateless electropolymerization process. Synthetic Metals, 224, 99–108.

    Google Scholar 

  47. Darmanin, T., Bombera, R., Colpo, P., Valsesia, A., Laugier, J. P., Rossi, F., & Guittard, F. (2017). Bioinspired rose petal-like substrates generated by electropolymerization on micropatterned gold substrates. ChemPlusChem, 82, 352–357.

    Google Scholar 

  48. Darmanin, T., & Guittard, F. (2016). Templateless electrodeposition of conducting polymer nanotubes on mesh substrates for high water adhesion. Nano-Structures and Nano-Objects, 7, 64–68.

    Google Scholar 

  49. Fradin, C., Celestini, F., Guittard, F., & Darmanin, T. (2020). Templateless electrodeposition of conducting polymer nanotubes on mesh substrates. Macromolecular Chemistry and Physics, 221, 1900529.

    Google Scholar 

  50. Ramos Chagas, G., Fradin, C., Celestini, F., Guittard, F., & Darmanin, T. (2019). Dynamic wetting properties of mesh substrates with tunable water adhesion. ChemPhysChem, 20, 1905–1905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Darmanin.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodja, M., Bousrih, I., El Kateb, M. et al. Formation of Nanotubular Structures with Petal Effect by Soft-Template Electropolymerization of Benzotrithiophene with Hydrophilic Carboxyl Group. J Bionic Eng 19, 1054–1063 (2022). https://doi.org/10.1007/s42235-022-00193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00193-1

Keywords

Navigation