Skip to main content
Log in

Development and Evaluation of a Wearable Lower Limb Rehabilitation Robot

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper introduces a rigid-flexible coupling wearable exoskeleton robot for lower limb, which is designed in light of gait biomechanics and beneficial for low limb movement disorders by implementing gait training. The rationality of the proposed mechanism is shown with the implementation of the dynamic simulation through MSC ADAMS. For the purposes of lightweight, the exoskeleton mechanism is optimized through finite element analysis. It can be concluded from performance evaluation experiment, the mechanism has certain advantages over existing exoskeleton robots, namely, comfortable, lightweight, low cost, which can be utilized for rehabilitation training in medical institutions or as a daily-walking ancillary equipment for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chia, F. S., Kuys, S., & Low Choy, N. (2019). Sensory retraining of the leg after stroke: Systematic review and meta-analysis. Clinical Rehabilitation, 33(6), 964–979. https://doi.org/10.1177/0269215519836461

    Article  Google Scholar 

  2. Bernhardt, J., Urimubenshi, G., Gandhi, D. B. C., & Eng, J. J. (2020). Stroke rehabilitation in low-income and middle-income countries: A call to action. The Lancet, 396(10260), 1452–1462. https://doi.org/10.1016/S0140-6736(20)31313-1

    Article  Google Scholar 

  3. Stinear, C. M., Lang, C. E., Zeiler, S., & Byblow, W. D. (2020). Advances and challenges in stroke rehabilitation. The Lancet Neurology, 19(4), 348–360. https://doi.org/10.1016/S1474-4422(19)30415-6

    Article  Google Scholar 

  4. Lindsay, L. R., Thompson, D. A., & O’Dell, M. W. (2020). Updated approach to stroke rehabilitation. Medical Clinics of North America, 104(2), 199–211. https://doi.org/10.1016/j.mcna.2019.11.002

    Article  Google Scholar 

  5. Patel, A., Knapp, M., Perez, I., Evans, A., & Kalra, L. (2004). Alternative strategies for stroke care: cost-effectiveness and cost-utility analyses from a prospective randomized controlled trial. Stroke, 35(1), 196–203. https://doi.org/10.1161/01.STR.0000105390.20430.9F

    Article  Google Scholar 

  6. Oyake, K., Suzuki, M., Otaka, Y., Momose, K., & Tanaka, S. (2020). Motivational strategies for stroke rehabilitation: A delphi study. Archives of Physical Medicine and Rehabilitation, 101(11), 1929–1936. https://doi.org/10.1016/j.apmr.2020.06.007

    Article  Google Scholar 

  7. Cafolla, D., Russo, M., & Carbone, G. (2019). CUBE, A cable-driven device for limb rehabilitation. Journal of Bionic Engineering, 16, 492–502. https://doi.org/10.1007/s42235-019-0040-5

    Article  Google Scholar 

  8. Shi, D., Zhang, W. X., Zhang, W., & Ding, X. L. (2019). A review on lower limb rehabilitation exoskeleton robots. Chinese Journal of Mechanical Engineering, 32(74), 2–12. https://doi.org/10.1186/s10033-019-0389-8

    Article  Google Scholar 

  9. Allouche, B., Saade, A., Dequidt, A., Laurent, V., & Olivier, R. N. (2018). Design and control of an assistive device for the study of the post-stroke sit-to-stand movement. Journal of Bionic Engineering, 15, 647–660. https://doi.org/10.1007/s42235-018-0053-5

    Article  Google Scholar 

  10. Zhang, F., Hou, Z. G., Cheng, L., Wang, W. Q., Chen, Y., Hu, J., Peng, L., & Wang, H. (2016). iLeg—A lower limb rehabilitation robot: a proof of concept. IEEE Transactions on Human-Machine Systems, 46(5), 761–768. https://doi.org/10.1109/THMS.2016.2562510

    Article  Google Scholar 

  11. Mohan, S., Mohanta, J. K., Kurtenbach, S., Paris, J., Corves, B., & Huesing, M. (2017). Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mechanism and Machine Theory, 112, 272–294. https://doi.org/10.1016/j.mechmachtheory.2017.03.001

    Article  Google Scholar 

  12. Maestro, M. A., Ruz, A. E., Casado-Lopez, R. E., Gonzalez, A. M., Mateos, G. P., Valdizan, E. G., & Martin, J. L. (2012). Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: Randomized controlled trial. Neurorehabilitation and Neural Repair, 26(9), 1058–1063. https://doi.org/10.1177/1545968312448232

    Article  Google Scholar 

  13. Ogino, T., Kanata, Y., Uegaki, R., Yamaguchi, T., Morisaki, K., Nakano, S., & Domen, K. (2020). Effects of gait exercise assist robot (GEAR) on subjects with chronic stroke: A randomized controlled pilot trial. Journal of Stroke and Cerebrovascular Diseases, 29(8), 104886. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104886

    Article  Google Scholar 

  14. Bayón, C., Ramírez, O., Serrano, J. I., Del Castillo, M. D., Pérez-Somarriba, A., Belda-Lois, J. M., Martínez-Caballero, I., Lerma-Lara, S., Cifuentes, C., Frizera, A., & Rocon, E. (2017). Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robotics and Autonomous Systems, 91, 101–114. https://doi.org/10.1016/j.robot.2016.12.015

    Article  Google Scholar 

  15. Zhang, W., Zhang, W. X., Shi, D., & Ding, X. L. (2018). Design of hip joint assistant asymmetric parallel mechanism and optimization of singularity-free workspace. Mechanism and Machine Theory, 122, 389–403. https://doi.org/10.1016/j.mechmachtheory.2017.12.013

    Article  Google Scholar 

  16. Zhang, W. X., Zhang, W., Ding, X. L., & Sun, L. (2019). Optimization of the rotational asymmetric parallel mechanism for hip rehabilitation with force transmission factors. Journal of Mechanisms and Robotics, 12(4), 1–23. https://doi.org/10.1115/1.4045847

    Article  Google Scholar 

  17. Witte, K. A., Fatschel, A. M., & Collins, S. H. (2017). Design of a lightweight, tethered, torque-controlled knee exoskeleton. In International Conference on Rehabilitation Robotics (ICORR), London, UK, pp. 1646−1653. https://doi.org/10.1109/ICORR.2017.8009484

  18. Zhang, J. J., Fiers, P., Witte, K. A., Jackson, R. W., Poggensee, K. L., Atkeson, C. G., & Collins, S. H. (2017). Human-in-the-loop optimization of exoskeleton assistance during walking. Science, 356(6344), 1280–1283. https://doi.org/10.1126/science.aal5054

    Article  Google Scholar 

  19. Zanotto, D., Akiyama, Y., Stegall, P., & Agrawal, S. K. (2015). Knee joint misalignment in exoskeletons for the lower extremities: Effects on user’s gait. IEEE Transactions on Robotics, 31(4), 978–987. https://doi.org/10.1109/TRO.2015.2450414

    Article  Google Scholar 

  20. Zhou, L. B., Chen, W. H., Wang, J. H., Bai, S. P., Yu, H. Y., & Zhang, Y. P. (2018). A novel precision measuring parallel mechanism for the closed-loop control of a biologically inspired lower limb exoskeleton. IEEE/ASME Transactions on Mechatronics, 23(6), 2693–2703. https://doi.org/10.1109/TMECH.2018.2872011

    Article  Google Scholar 

  21. Shao, Y. X., Zhang, W. X., Su, Y. J., & Ding, X. L. (2021). Design and optimization of load-adaptive actuator with variable stiffness for compact ankle exoskeleton. Mechanism and Machine Theory, 161, 104323. https://doi.org/10.1016/j.mechmachtheory.2021.104323

    Article  Google Scholar 

  22. Chen, G., Qi, P., Guo, Z., & Yu, H. Y. (2016). Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation. Mechanism and Machine Theory, 103, 51–64. https://doi.org/10.1016/j.mechmachtheory.2016.04.012

    Article  Google Scholar 

  23. Shao, Y. X., Zhang, W. X., & Ding, X. L. (2021). Configuration synthesis of variable stiffness mechanisms based on guide-bar mechanisms with length-adjustable links. Mechanism and Machine Theory, 156, 104153. https://doi.org/10.1016/j.mechmachtheory.2020.104153

    Article  Google Scholar 

  24. Wehner, M., Quinlivan, B., Aubin, P. M., Martinez-Villalpando, E., Baumann, M., Stirling, L., Holt, K., Wood, R., & Walsh, C. (2013). A lightweight soft exosuit for gait assistance. In IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 3362−3369. https://doi.org/10.1109/ICRA.2013.6631046

  25. Schiele, A. (2009). Ergonomics of exoskeletons: Objective performance metrics. In World Haptics 2009-Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA, pp. 103−108. https://doi.org/10.1109/WHC.2009.4810871

  26. Ding, Y., Galiana, I., Asbeck, A., Quinlivan, B., De Rossi, S. M. M., & Walsh, C. (2014). Multi-joint actuation platform for lower extremity soft exosuits. In IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp. 1327−1334. https://doi.org/10.1109/ICRA.2014.6907024

  27. Winter, D. A. (2009). Biomechanics and motor control of human movement. University of Waterloo Press.

    Book  Google Scholar 

  28. Shellock, F. G., & Powers, C. M. (2001). Kinematic MRI of the joints: Functional anatomy, kinesiology, and clinical applications. CRC Press.

    Book  Google Scholar 

  29. Baker, R. (2013). Measuring walking: A handbook of clinical gait analysis. Mac Keith Press.

    Google Scholar 

Download references

Acknowledgements

The work is supported in part by the National Natural Science Foundation of China under Grants (61873304), and in part by the China Postdoctoral Science Foundation Funded Project under Grant (2018M641784), and also in part by the Funding of Jilin Province Science and Technology (JJKH20210745KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keping Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liu, K., Li, C. et al. Development and Evaluation of a Wearable Lower Limb Rehabilitation Robot. J Bionic Eng 19, 688–699 (2022). https://doi.org/10.1007/s42235-022-00172-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00172-6

Keywords

Navigation