Skip to main content
Log in

Impact of Hierarchical Architecture of Cryptotermes brevis Wing on the Modulation of Bacterial Adhesion

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The wing architecture is an inspiration to fabricate novel materials with exquisite properties. The current study characterizes the structure and biological function of a termite’s wing. The topography of the surface of the wing was studied by electron microscopy, and surface profilometer. The physicochemical property of the surface was analyzed by Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, energy-dispersive X-ray spectroscopy, and gas chromatography–mass spectrometry analysis of the epicuticle content. Water Contact Angle measurement confirmed the hydrophobicity of the wing surface. When microorganisms come in contact with the surface of the wing, they adhere to the wing surface due to cell surface properties of their own and the surface chemistry of the wing. The current study reported the adhesion behavior of two bacterial species. The bactericidal activity of the wing was confirmed by counting the bacterial cell viability and examination under a confocal laser scanning microscope. Adhesion of bacteria was observed under the electron microscope. Bacterial oxidative stress, the topography of the wing, and the surface chemistry of the wing are the crucial factors that induce bactericidal activity. The nanostructure along with the chemical composition of the wing can be mimicked for the fabrication of novel material with antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. Zhang, X. X., Wang, L., & Levanen, E. (2013). Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Advances, 3, 12003–12020.

    Google Scholar 

  2. Paikra, S. K., & Mishra, M. (2021). Role of physicochemical organization of Rhyothemis variegata wing in monitoring bactericidal activity. Surfaces and Interfaces, 27, 101576.

  3. Zhao, D. Y., Tian, Q. Q., Wang, M. J., & Jin, Y. F. (2014). Study on the Hydrophobic Property of Shark-Skin-Inspired Micro-Riblets. Journal of Bionic Engineering, 11, 296–302.

    Google Scholar 

  4. Patil, D., Overland, M., Stoller, M., & Chatterjee, K. (2021). Bioinspired nanostructured bactericidal surfaces. Current Opinion in Chemical Engineering, 34, 100741.

  5. Liu, D., Song, B. F., Yang, W. Q., Yang, X. J., Xue, D., & Lang, X. Y. (2021). A brief review on aerodynamic performance of wingtip slots and research prospect. Journal of Bionic Engineering, 18, 1255–1279.

    Google Scholar 

  6. Lee, Y., Yoo, Y., Kim, J., Widhiarini, S., Park, B., Park, H. C., Yoon, K. J., & Byun, D. (2009). Mimicking a superhydrophobic insect wing by argon and oxygen ion beam treatment on polytetrafluoroethylene film. Journal of Bionic Engineering, 6, 365–370.

    Google Scholar 

  7. Shahali, H., Hasan, J., Mathews, A., Wang, H., Yan, C., Tesfamichael, T., & Yarlagadda, P. (2019). Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars. Journal of Materials Chemistry B, 7, 1300–1310.

    Google Scholar 

  8. Hasan, J., Roy, A., Chatterjee, K., & Yarlagadda, P. K. (2019). Mimicking insect wings: the roadmap to bioinspiration. ACS Biomaterials Science & Engineering, 5, 3139–3160.

    Google Scholar 

  9. Bandara, C. D., Singh, S., Afara, I. O., Wolff, A., Tesfamichael, T., Ostrikov, K., & Oloyede, A. (2017). Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Applied Materials & Interfaces, 9, 6746–6760.

    Google Scholar 

  10. Nguyen, S. H., Webb, H. K., Mahon, P. J., Crawford, R. J., & Ivanova, E. P. (2014). Natural insect and plant micro-/nanostructsured surfaces: An excellent selection of valuable templates with superhydrophobic and self-cleaning properties. Molecules, 19, 13614–13630.

    Google Scholar 

  11. Ortiz, C., & Boyce, M. C. (2008). Bioinspired structural materials. Science, 319, 1053–1054.

    Google Scholar 

  12. Rajabi, H., Moghadami, M., & Darvizeh, A. (2011). Investigation of microstructure, natural frequencies and vibration modes of dragonfly Wing. Journal of Bionic Engineering, 8, 165–173.

    Google Scholar 

  13. Wedmore, I., Mcmanus, J. G., Pusateri, A. E., & Holcomb, J. B. (2006). A special report on the chitosan-based hemostatic dressing: experience in current combat operations. Journal of Trauma and Acute Care Surgery, 60, 655–658.

    Google Scholar 

  14. Meyers, M. A., Chen, P.-Y., Lin, A.Y.-M., & Seki, Y. (2008). Biological materials: structure and mechanical properties. Progress in Materials Science, 53, 1–206.

    Google Scholar 

  15. Kumari, N., Sood, N., & Krishnan, V. (2020). Beetle wing inspired fabrication of nanojunction based biomimetic SERS substrates for sensitive detection of analytes. Materials Technology. https://doi.org/10.1080/10667857.10662020.11816382

    Article  Google Scholar 

  16. Kumari, N., Kumar, A., & Krishnan, V. (2021). Ultrathin Au–Ag heterojunctions on nanoarchitectonics based biomimetic substrates for dip catalysis. Journal of Inorganic and Organometallic Polymers and Materials, 31, 1954–1966.

    Google Scholar 

  17. Sharma, V., Kumar, S., Reddy, K. L., Bahuguna, A., & Krishnan, V. (2016). Bioinspired functional surfaces for technological applications. Journal of Molecular and Engineering Materials, 4, 1640006.

    Google Scholar 

  18. Gao, X. Y., & Guo, Z. G. (2017). Biomimetic superhydrophobic surfaces with transition metals and their oxides: a review. Journal of Bionic Engineering, 14, 401–439.

    Google Scholar 

  19. Cosme, L., Jr., Turchen, L. M., & Guedes, R. N. C. (2020). Chemical constituents of tropical woods and resistance to the invasive drywood termite Cryptotermes brevis. Journal of Applied Entomology, 144, 270–277.

    Google Scholar 

  20. Kaya, M., Sofi, K., Sargin, I., & Mujtaba, M. (2016). Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydrate Polymers, 145, 64–70.

    Google Scholar 

  21. Wang, K. J., Zhang, J. Q., Fang, Y. Q., Chen, D. B., Liu, L. P., Han, Z. W., & Ren, L. Q. (2019). Micro/nano-scale characterization and fatigue fracture resistance of mechanoreceptor with crack-shaped slit arrays in scorpion. Journal of Bionic Engineering, 16, 410–422.

    Google Scholar 

  22. Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23, 536–547.

    Google Scholar 

  23. Du, Y.-Z., Wang, L., Yuan, H., Wei, X.-H., & Hu, F.-Q. (2009). Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids and Surfaces B: Biointerfaces, 69, 257–263.

    Google Scholar 

  24. Atarian, M., Rajaei, A., Tabatabaei, M., Mohsenifar, A., & Bodaghi, H. (2019). Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability. Carbohydrate Polymers, 210, 47–55.

    Google Scholar 

  25. Fernandez, J. G., & Ingber, D. E. (2012). Unexpected strength and toughness in chitosan-fibroin laminates inspired by insect cuticle. Advanced Materials, 24, 480–484.

    Google Scholar 

  26. Cai, Y., Bing, W., Xu, X., Zhang, Y., Chen, Z., & Gu, Z. (2021). Topographical nanostructures for physical sterilization. Drug Delivery and Translational Research, 11, 1376–1389.

    Google Scholar 

  27. Mcmahon, A., Lu, H., & Butovich, I. A. (2013). The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions. Lipids, 48, 513–525.

    Google Scholar 

  28. Ivanova, E. P., Nguyen, S. H., Webb, H. K., Hasan, J., Truong, V. K., Lamb, R. N., Duan, X., Tobin, M. J., Mahon, P. J., & Crawford, R. J. (2013). Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle. PLoS ONE, 8, 67893.

    Google Scholar 

  29. Gołębiowski, M., Boguś, M. I., Paszkiewicz, M., & Stepnowski, P. (2010). The composition of the free fatty acids from Dendrolimus pini exuviae. Journal of Insect Physiology, 56, 391–397.

    Google Scholar 

  30. Van Dooremalen, C., & Ellers, J. (2010). A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod. Journal of Insect Physiology, 56, 178–184.

    Google Scholar 

  31. Gołębiowski, M., Boguś, M. I., Paszkiewicz, M., & Stepnowski, P. (2011). Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. Analytical and Bioanalytical Chemistry, 399, 3177–3191.

    Google Scholar 

  32. Ivanova, E. P., Hasan, J., Webb, H. K., Truong, V. K., Watson, G. S., Watson, J. A., Baulin, V. A., Pogodin, S., Wang, J. Y., & Tobin, M. J. (2012). Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small (Weinheim an der Bergstrasse, Germany), 8, 2489–2494.

    Google Scholar 

  33. Sahoo, J. K., Paikra, S. K., Mishra, M., & Sahoo, H. (2019). Amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of Congo red dye. Journal of Molecular Liquids, 282, 428–440.

    Google Scholar 

  34. Watson, G. S., Cribb, B. W., & Watson, J. A. (2010). How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing. ACS Nano, 4, 129–136.

    Google Scholar 

  35. Kreuz, P., Arnold, W., & Kesel, A. (2001). Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface. Annals of Biomedical Engineering, 29, 1054–1058.

    Google Scholar 

  36. Kaya, M., Bitim, B., Mujtaba, M., & Koyuncu, T. (2015). Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora). International Journal of Biological Macromolecules, 81, 443–449.

    Google Scholar 

  37. Zeier, J., & Schreiber, L. (1999). Fourier transform infrared-spectroscopic characterisation of isolated endodermal cell walls from plant roots: chemical nature in relation to anatomical development. Planta, 209, 537–542.

    Google Scholar 

  38. Padmavathi, A. R., Abinaya, B., & Pandian, S. K. (2014). Phenol, 2, 4-bis (1, 1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling, 30, 1111–1122.

    Google Scholar 

  39. Lian, J., Pan, G., Xu, J., Zhu, Z., & Ni, J. (2019). Wenzel-cassie wetting transition of droplet on rough metal substrates. Science of Advanced Materials, 11, 533–539.

    Google Scholar 

  40. Kaya, M., Mujtaba, M., Ehrlich, H., Salaberria, A. M., Baran, T., Amemiya, C. T., Galli, R., Akyuz, L., Sargin, I., & Labidi, J. (2017). On chemistry of γ-chitin. Carbohydrate Polymers, 176, 177–186.

    Google Scholar 

  41. Hossin, M. A., Al Shaqsi, N. H. K., Al Touby, S. S. J., & Al Sibani, M. A. (2021). A review of polymeric chitin extraction, characterization, and applications. Arabian Journal of Geosciences, 14, 1870.

    Google Scholar 

  42. Kelleher, S. M., Habimana, O., Lawler, J., O’reilly, B., Daniels, S., Casey, E., & Cowley, A. (2015). Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Applied Materials & Interfaces, 8, 14966–14974.

    Google Scholar 

  43. Rzhepishevska, O., Limanska, N., Galkin, M., Lacoma, A., Lundquist, M., Sokol, D., Hakobyan, S., Sjostedt, A., Prat, C., & Ramstedt, M. (2018). Characterization of clinically relevant model bacterial strains of Pseudomonas aeruginosa for anti-biofilm testing of materials. Acta Biomaterialia, 76, 99–107.

    Google Scholar 

  44. Das, M. C., Sandhu, P., Gupta, P., Rudrapaul, P., De, U. C., Tribedi, P., Akhter, Y., & Bhattacharjee, S. (2016). Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gentamicin. Scientific Reports, 6, 23347.

    Google Scholar 

  45. Truong, V. K., Lapovok, R., Estrin, Y. S., Rundell, S., Wang, J. Y., Fluke, C. J., Crawford, R. J., & Ivanova, E. P. (2010). The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials, 31, 3674–3683.

    Google Scholar 

  46. Benhabiles, S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29, 48–56.

    Google Scholar 

  47. Da Silva Lucas, A. J., Oreste, E. Q., Costa, H. L. G., López, H. M., Saad, C. D. M., & Prentice, C. (2021). Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chemistry, 343, 128550.

  48. Kravanja, G., Primozic, M., Knez, Z., & Leitgeb, M. (2019). Chitosan-based (Nano)materials for novel biomedical applications. Molecules, 24, 1960.

    Google Scholar 

  49. Ahmed, S., & Ikram, S. (2016). Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences, 10, 27–37.

    Google Scholar 

  50. Karthikeyan, C., Varaprasad, K., Venugopal, S. K., Shakila, S., Venkatraman, B., & Sadiku, R. (2021). Biocidal (bacterial and cancer cells) activities of chitosan/CuO nanomaterial, synthesized via a green process. Carbohydrate Polymers, 259, 117762.

  51. Roy, S., Mondal, A., Yadav, V., Sarkar, A., Banerjee, R., Sanpui, P., & Jaiswal, A. (2019). Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets: membrane damage, metabolic inactivation, and oxidative stress. ACS Applied Bio Materials, 2, 2738–2755.

    Google Scholar 

  52. Leonida, M. D., Belbekhouche, S., Benzecry, A., Peddineni, M., Suria, A., & Carbonnier, B. (2018). Antibacterial hop extracts encapsulated in nanochitosan matrices. International Journal of Biological Macromolecules, 120, 1335–1343.

    Google Scholar 

  53. Chang, A. K. T., Frias, R. R., Jr., Alvarez, L. V., Bigol, U. G., & Guzman, J. P. M. D. (2019). Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatalysis and Agricultural Biotechnology, 17, 189–195.

    Google Scholar 

  54. Jenkins, J., Mantell, J., Neal, C., Gholinia, A., Verkade, P., Nobbs, A. H., & Su, B. (2020). Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nature Communications, 11, 1626.

    Google Scholar 

Download references

Acknowledgements

SKP and SM are thankful to MHRD for fellowship assistance. NN is thankful to the Department of science and technology, DST-Inspire, India for financial assistance, and JB is thankful to DBT, India for fellowship assistance. The authors would like to express sincere gratitude to Dr. Elena P. Ivanova for providing valuable suggestions regarding the surface property of the wing to improve the quality of work. We are also grateful to the central instrument facility of NIT, Rourkela, Odisha, India for providing the instruments. Our lab is also supported by the Department of Biotechnology, Government of India, Grant No. BT/PR21857/NNT/28/1238/2017, Science and engineering research board (SERB) EMR/2017/003054, Odisha DBT (Department of biotechnology) 3325/ST(BIO)-02/2017. Anonymous reviewers are thankfully acknowledged for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra.

Ethics declarations

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paikra, S.K., Mukherjee, S., Nayak, N. et al. Impact of Hierarchical Architecture of Cryptotermes brevis Wing on the Modulation of Bacterial Adhesion. J Bionic Eng 19, 516–529 (2022). https://doi.org/10.1007/s42235-021-00148-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00148-y

Keywords

Navigation