Skip to main content
Log in

Experimental Validation of Light Cable-Driven Elbow-Assisting Device L-CADEL Design

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new design of CADEL, a cable-driven elbow-assisting device, with light weighting and control improvements. The new device design is appropriate to be more portable and user-oriented solution, presenting additional facilities with respect to the original design. One of potential benefits of improved portability can be envisaged in the possibility of house and hospital usage keeping social distancing while allowing rehabilitation treatments even during a pandemic spread. Specific attention has been devoted to design main mechatronic components by developing specific kinematics models. The design process includes an implementation of specific control hardware and software. The kinematic model of the new design is formulated and features are evaluated through numerical simulations and experimental tests. An evaluation from original design highlights the proposed improvements mainly in terms of comfort, portability and user-oriented operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Niama Natta, D. D., Alagnide, E., Kpadonou, G. T., Stoquart, G. G., Detrembleur, C., & Lejeune, T. M. (2015). Feasibility of a self-rehabilitation program for the upper limb for stroke patients in Benin. Annals of Physical and Re-habilitation Medicine, 58, 322–325.

    Article  Google Scholar 

  2. Rosati, G. (2010). The place of robotics in post-stroke rehabilitation. Expert Review of Medical Devices, 7, 753–758.

    Article  Google Scholar 

  3. Stefano, M., Patrizia, P., Mario, A., Ferlini, G., Rizzello, R., & Rosati, G. (2014). Robotic upper limb rehabilitation after acute stroke by NeReBot: evaluation of treatment costs. BioMed Research International, 2014(265634), 5.

    Google Scholar 

  4. Miao, Q., Zhang, M., McDaid, A. J., Peng, Y. X., & Xie, S. Q. (2020). A robot-assisted bilateral upper limb training strategy with subject-specific workspace: a pilot study. Robotics and Autonomous Systems, 124, 103334.

    Article  Google Scholar 

  5. Gattamelata, D., Pezzuti, E., & Valentini, P. P. (2007). Accurate geometrical constraints for the computer aided modelling of the human upper limb. Computer-Aided Design, Human Modeling and Applications, 7, 540–547.

    Article  Google Scholar 

  6. Zuccon, G., Bottin, M., Ceccarelli, M., & Rosati, G. (2020). Design and performance of an elbow assisting mechanism. MDPI Machines, 8, 68.

    Article  Google Scholar 

  7. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., & Leonhardt, S. (2014). A survey on robotic devices for upper limb rehabilitation. Journal of Neuro-engineering and Rehabilitation, 11, 3.

    Article  Google Scholar 

  8. Niyetkaliyev, A. S., Hussain, S., Ghayesh, M. H., & Alici, G. (2017). Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Transactions on Human-Machine Systems, 6, 1134–1145.

    Article  Google Scholar 

  9. Mihel, M., Nef, T., & Riener, R. (2007). ARMin: a robot for patient-cooperative arm therapy. Medical and Biological Engineering and Computing, 45, 887–900.

    Article  Google Scholar 

  10. Mao, Y., & Agrawal, S.-K. (2012). Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 28, 922–931.

    Article  Google Scholar 

  11. Delden, L. V., Peper, C. E., Kwakkel, G., & Beek, P. J. (2012). A systematic review of bilateral upper limb training devices for post-stroke rehabilitation. Stroke Research and Treatment, 2012, 972069.

    Google Scholar 

  12. Frisoli, A., Bergamasco, M., Carboncini, M. C., & Rossi, B. (2009). Robotic assisted rehabilitation in virtual reality with the L-EXOS. Studies in Health Technology and Informatics, 145, 40–54.

    Google Scholar 

  13. Bertani, R., Melegari, C., De Cola, M. C., Bramanti, A., Bramanti, P., & Calabrò, R. S. (2017). Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurological Sciences, 38, 1561–1569.

    Article  Google Scholar 

  14. Ceccarelli, M. (2004). Fundamentals of mechanics of robotic manipulation (p. 312). Springer.

    Book  Google Scholar 

  15. Ball S.J., Brown I.E., Scott S.H. (2007) MEDARM: A rehabilitation robot with 5DOF at the shoulder complex, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland, 1–6, https://doi.org/10.1109/AIM.2007.4412446.

  16. Carignan C., Tang J., Roderick S. (2009) Development of an exoskeleton haptic interface for virtual task training, IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, 3697–3702.

  17. Gopura R. A. R. C., Kiguchi K., Li Y. (2009) SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control, IEEE International Conference on Intelligent Robots and Systems, St. Louis, USA, 2009, 1126–1131.

  18. Rosati G., Gallina P., Masiero S., Rossi A. (2005) Design of a new 5 d.o.f. wire-based robot for rehabilitation, IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 430–433

  19. Ceccarelli, M., & Romdhane, L. (2010). Design issues for human–machine platform interface in cable-based parallel manipulators for physiotherapy applications. Journal of Zhejiang University Science A, 11, 231–239.

    Article  Google Scholar 

  20. Ceccarelli, M. (2013). Problems and experiences on cable-based service robots for physiotherapy applications. New trends in medical and service robots (pp. 27–42). Springer.

    Google Scholar 

  21. Neumann, D. A. (2016). Kinesiology of the musculoskeletal system: foundations for rehabilitation (3rd ed., p. 597). Elsevier Health Sciences, Mosby.

    Google Scholar 

  22. Eduardo, P.-M., Ricardo, R., Salvador, L. M., & Ernesto, R. L. (2018). Vision system-based design and assessment of a novel shoulder joint mechanism for an enhanced workspace upper limb exoskeleton. Applied Bionics and Biomechanics, 2018, 6019381.

    Google Scholar 

  23. Ennaiem, F., Chaker, A., Sandoval, J., Laribi, M. A., Bennour, S., Mlika, A., Romdhane, L., & Zeghloul, S. (2020). Optimal design of a re-habilitation four cable-driven parallel robot for daily living activities. Advances in Service and Industrial Robotics, RAAD. Mechanisms and machine science (Vol. 84, pp. 3–12). Springer.

    Chapter  Google Scholar 

  24. Laribi, M. A., & Ceccarelli, M. (2021). Design and experimental characterization of a cable-driven elbow assisting device. ASME Journal of Medical Devices, 1, 014503.

    Article  Google Scholar 

  25. Hamill, J., & Knutzen, K. M. (2015). Biomechanical basis of human movement (4th ed., p. 568). Lippincott Williams & Wilkins.

    Google Scholar 

  26. Ceccarelli, M. (2011). Problems and issues for service robots in new applications. International Journal of Social Robotics, 3(3), 299–312.

    Article  MathSciNet  Google Scholar 

  27. Ceccarelli, M. (2012). Service robots and robotics: design and application, engineering science reference (IGI Global) (p. 441). Hershey. https://doi.org/10.4018/978-1-4666-0291-5

    Book  Google Scholar 

  28. Masiero, S., Celia, A., Rosati, G., & Armani, M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of Physical Medicine and Rehabilitation, 88(2), 142–149.

    Article  Google Scholar 

  29. Rudhe, C., Albisser, U., Starkey, M. L., Curt, A., & Bolliger, M. (2012). Reliability of movement workspace measurements in a passive arm orthosis used in spinal cord injury rehabilitation. Journal of Neuroengineering and Rehabilitation, 9, 37.

    Article  Google Scholar 

  30. Qassim, H. M., & Wan Hasan, W. Z. (2020). A review on upper limb rehabilitation robots. MDPI Applied Sciences, 10, 6976.

    Article  Google Scholar 

  31. Ceccarelli, M., Riabtsev, M., Fort, A., Russo, M., Laribi, M. A., & Urizar, M. (2021). Design and experimental characterization of L-CADEL v2, an assistive device for elbow motion. Sensors, 21, 5149.

    Article  Google Scholar 

  32. Stinear, C. M., Lang, C. E., Zeiler, S., & Byblow, W. D. (2020). Advances and challenges in stroke rehabilitation. Lancet Neurology, 4, 348–360.

    Article  Google Scholar 

  33. Longhi, M., Merlo, A., Prati, P., Giacobbi, M., & Mazzoli, D. (2016). Instrumental indices for upper limb function assessment in stroke pa-tients: a validation study. Journal of NeuroEngineering Rehabilitation, 13, 52.

    Article  Google Scholar 

  34. Ceccarelli M., Ferrara L., Petuya V., Device for elbow rehabilitation, patent n.102017000083887, 2017, Italy.

  35. Ceccarelli, M., Ferrara, L., & Petuya, V. (2019). Design of a cable-driven device for elbow rehabilitation and exercise, Interdisciplinary Applications of Kinematics (pp. 61–68). Springer.

    Book  Google Scholar 

  36. Kozisek, A., Ceccarelli, M., Laribi, M. A., & Ferrara, L. (2021). Experimental characterization of a cable-driven device for elbow motion assistance. New trends in medical and service robotics—MESROB 2020 (Vol. 93, pp. 71–78). Springer.

    Chapter  Google Scholar 

  37. Zuccon, G., Bottin, M., Ceccarelli, M., & Rosati, G. (2020). Design and performance of an elbow assisting mechanism. Machines, 8, 68.

    Article  Google Scholar 

  38. Bottin, M., Ceccarelli, M., Morales-Cruz, C., & Rosati, G. (2021). Design and operation improvements for CADEL cable-driven elbow assisting device. Advances in Italian mechanism science. IFToMM ITALY 2020 (p. 91). Cham, Germany: Springer. https://doi.org/10.1007/978-3-030-55807-9_57

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Med Amine Laribi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laribi, M.A., Ceccarelli, M., Sandoval, J. et al. Experimental Validation of Light Cable-Driven Elbow-Assisting Device L-CADEL Design. J Bionic Eng 19, 416–428 (2022). https://doi.org/10.1007/s42235-021-00133-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00133-5

Keywords

Navigation