Skip to main content
Log in

Wear Resistance, Cytotoxicity and Antibacterial Properties of Polyetheretherketone Composite Modified by Carbon Fiber and Black Phosphorus

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

High wear resistance, low cytotoxicity and excellent antibacterial properties are the basis for osseointegration of implant materials. Polyetheretherketone (PEEK) has been considered as a potential implant material due to its excellent biocompatibility, natural radiolucency and mechanical properties. In this work, to improve the wear resistance, cytotoxicity and antibacterial properties of PEEK, carbon fiber (CFR) and Black Phosphorus (BP) were used to synergistically modify PEEK by two methods, deposition of BP coating on CFR-PEEK and BP/CFR-PEEK coating on Ti6Al4V (TC4) through electrostatic spraying. After CFR and BP synergistically modified PEEK, the friction coefficient of BP coating on CFR-PEEK and BP/CFR-PEEK coating were 0.14 ± 0.01 and 0.09 ± 0.02, respectively. The wear volume of BP coating on CFR-PEEK (30.54 ± 1.32) was higher than that of BP/CFR-PEEK coating (9.46 ± 1.32), which indicated that BP/CFR-PEEK coating showed high wear resistance. The difference in wear resistance may be caused by the fact that BP was not easily oxidized in BP/CFR-PEEK coating. In addition, BP coating on CFR-PEEK and BP/CFR-PEEK coating showed no obvious cytotoxicity to L929 cell and presented excellent antibacterial efficiency (up to 94.5% ± 2.8% and 96.0% ± 3.8%, respectively) against Staphylococcus aureus (S. aureus). It was concluded that BP/CFR-PEEK coating exhibited high wear resistance, low cytotoxicity and excellent antibacterial properties against S. aureus, which might provide a foundation for osseointegration of implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chamberlain, K. A., Rankin, K. S., Briscoe, A., Deehan, D., & Hyde, P. J. (2019). Wear properties of poly-ether-ether-ketone bearing combinations under zero and cross shear kinematics in total knee arthroplasty. Journal of Biomedical Materials Research Part B Applied Biomaterials, 107, 445–453. 

    Article  Google Scholar 

  2. Zhang, J. B., Tian, W. Q., Chen, J. Y., Yu, J., Zhang, J. J., & Chen, J. C. (2019). The application of polyetheretherketone (PEEK) implants in cranioplasty. Brain Research Bulletin, 153, 143–149. 

    Article  Google Scholar 

  3. Deng, Y., Yang, Y. Y., Ma, Y., Fan, K. X., Yang, W. Z., & Yin, G. F. (2017). Nano-hydroxyapatite reinforced polyphenylene sulfide biocomposite with superior cytocompatibility and in vivo osteogenesis as a novel orthopedic implant. RSC Advances, 7, 559–573. 

    Article  Google Scholar 

  4. Sagomonyants, K. B., Jarman-Smith, M. L., Devine, J. N., Aronow, M. S., & Gronowicz, G. A. (2008). The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials, 29, 1563–1572. 

    Article  Google Scholar 

  5. Deng, Y., Zhou, P., Liu, X. C., Wang, L. X., Xiong, X. L., Tang, Z. H., Wei, J., & Wei, S. C. (2015). Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids and Surfces B-Biointerfaces, 136, 64–73. 

    Article  Google Scholar 

  6. Torstrick, F. B., Evans, N. T., Stevens, H. Y., Gall, K., & Guldberg, R. E. (2016). Do Surface porosity and pore size influence mechanical properties and cellular response to PEEK? Clinical Orthopaedics Related Research, 474, 2373–2383. 

    Article  Google Scholar 

  7. Bi, Y., Collier, T. O., Goldberg, V. M., Anderson, J. M., & Greenfield, E. M. (2010). Adherent endotoxin mediates biological responses of titanium particles without stimulating their phagocytosis. Journal of Orthopaedic Research, 20, 696–703. 

    Article  Google Scholar 

  8. Thrivikraman, G., Madras, G., & Basu, B. (2014). In vitro/in vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Advances, 4, 12763–12781.

  9. Bai, J. X., Wang, H. Y., Chen, H., Ge, G. R., Wang, M., Gao, A., Tong, L. P., Xu, Y. Z., Yang, H. L., Pan, G. Q., Chu, P. K., & Geng, D. C. (2020). Biomimetic osteogenic peptide with mussel adhesion and osteoimmunomodulatory functions to ameliorate interfacial osseointegration under chronic inflammation. Biomaterials, 255, 120197.

  10. Buck, E., Li, H., & Cerruti, M. (2020). Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites. Macromolecular Bioscience, 20, 1900271. 

    Article  Google Scholar 

  11. Li, Y., Wang, D. L., Qin, W., Jia, H., Wu, Y., Ma, J., & Tang, B. (2019). Mechanical properties, hemocompatibility, cytotoxicity and systemic toxicity of carbon fibers/poly(ether-ether-ketone) composites with different fiber lengths as orthopedic implants. Journal of Biomaterials Science Polymer Edition, 30, 1709–1724. 

    Article  Google Scholar 

  12. Zhao, X. D., Xiong, D. S., & Wu, X. X. (2017). Effects of surface oxidation treatment of carbon fibers on biotribological properties of CF/PEEK materials. Journal of Bionic Engineering, 14, 640–647. 

    Article  Google Scholar 

  13. Davim, J. P., & Cardoso, R. (2009). Effect of the reinforcement (carbon or glass fibres) on friction and wear behaviour of the PEEK against steel surface at long dry sliding. Wear, 266, 795–799. 

    Article  Google Scholar 

  14. Qin, W., Li, Y., Ma, J., Liang, Q., & Tang, B. (2019). Mechanical properties and cytotoxicity of hierarchical carbon fiber-reinforced poly (ether-ether-ketone) composites used as implant materials. Journal of the Mechanical Behavior of Biomedical Materials, 89, 227–233. 

    Article  Google Scholar 

  15. Xu, A. X., Zhou, L. W., Deng, Y., Chen, X. S., Xiong, X. L., Deng, F., & Wei, S. C. (2016). A carboxymethyl chitosan and peptide-decorated polyetheretherketone ternary biocomposite with enhanced antibacterial activity and osseointegration as orthopedic/dental implants. Journal of Materilas Chemistry B, 4, 1878–1890. 

    Article  Google Scholar 

  16. Latiff, N. M., Teo, W. Z., Sofer, Z., Fisher, A. C., & Pumera, M. (2015). The cytotoxicity of layered black phosphorus. Chemistry a European Journal, 21, 13991–13995. 

    Article  Google Scholar 

  17. Aksoy, I., Kucukkececi, H., Sevgi, F., Metin, O., & Patir, I. H. (2020). Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Applied Materials and Interfaces, 12, 26822–26831. 

    Article  Google Scholar 

  18. Huang, K. Q., Wu, J., & Gu, Z. P. (2019). Black phosphorus hydrogel scaffolds enhance bone regeneration via a sustained supply of calcium-free phosphorus. ACS Applied Materials and Interfaces, 11, 2908–2916. 

    Article  Google Scholar 

  19. Su, C. K., Zhong, H. Q., Chen, H. L., Guo, Y. X., Guo, Z. Y., Huang, D. Q., Zhang, W., Wu, Q., Yang, B. W., & Liu, Z. M. (2019). Black phosphorus–polypyrrole nanocomposites for high-performance photothermal cancer therapy. New Journal of Chemistry, 43, 8620–8626. 

    Article  Google Scholar 

  20. Sun, Z. Y., Zhang, Y. Q., Yu, H., Yan, C., Liu, Y. C., Hong, S., Tao, H. C., Robertson, A. W., Wang, Z., & Padua, A. A. H. (2018). New solvent-stabilized few-layer black phosphorus for antibacterial applications. Nanoscale, 10, 12543–12553. 

    Article  Google Scholar 

  21. Tan, L., Li, J., Liu, X. M., Cui, Z. D., Yang, X. J., Yeung, K. W. K., Pan, H. B., Zheng, Y. F., Wang, X. B., & Wu, S. L. (2018). In situ disinfection through photoinspired radical oxygen species storage and thermal-triggered release from black phosphorous with strengthened chemical stability. Small (Weinheim an der Bergstrasse, Germany), 14, 1703197. 

    Article  Google Scholar 

  22. Shao, J. D., Ruan, C. S., Xie, H. H., Li, Z. B., Wang, H. Y., Chu, P. K., & Yu, X. F. (2018). Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Advanced Science, 5, 1700848. 

    Article  Google Scholar 

  23. Hedayati, M., Salehi, M., Bagheri, R., Panjepour, M., & Naeimi, F. (2012). Tribological and mechanical properties of amorphous and semi-crystalline PEEK/SiO2 nanocomposite coatings deposited on the plain carbon steel by electrostatic powder spray technique. Progress in Organic Coatings, 74, 50–58. 

    Article  Google Scholar 

  24. Zhang, G., Liao, H., Yu, H., Ji, V., Huang, W., Mhaisalkar, S. G., & Coddet, C. (2006). Correlation of crystallization behavior and mechanical properties of thermal sprayed PEEK coating. Surface and Coatings Technology, 200, 6690–6695. 

    Article  Google Scholar 

  25. Suge, T., & Matsuo, T. (2013). Effects of ammonium hexafluorosilicate concentration on crystallinity of hydroxyapatite powder and enamel. Key Engineering Materials, 529–530, 526–530. 

    Article  Google Scholar 

  26. Chen, L., Zhang, L. F., Wang, H. J., Zhou, L. P., Chen, J., & Yuan, B. Y. (2005). Two different illites in luochuan loess, northern Shaanxi province. Chinese Science Bulletin, 50, 82–87. 

    Article  Google Scholar 

  27. Cagiao, M. E., Rueda, D. R., & Balta Calleja, F. J. (1987). Hardness of nitric acid treated polyethylene followed by recrystallization. Colloid and Polymer Science, 265, 37–41. 

    Article  Google Scholar 

  28. Tang, C., Li, X., Li, Z. W., Tian, W. X., & Zhou, Q. (2018). Molecular simulation on the thermal stability of meta-aramid insulation paper fiber at transformer operating temperature. Polymers, 10, 1348. 

    Article  Google Scholar 

  29. Hayashi, M., Shimizu, T., Imamura, M., Fujibayashi, S., Yamaguchi, S., Goto, K., Otsuki, B., Kawai, T., Okuzu, Y., & Matsuda, S. (2021). Optimizing the layer thickness of sol-gel-derived TiO2 coating on polyetheretherketone. Scientific Reports, 11, 15875.

  30. Holmberg, K., Laukkanen, A., Ronkainen, H., Wallin, K., & Varjus, S. (2003). A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear, 254, 278291. 

    Article  Google Scholar 

  31. Li, J., & Zhang, L. Q. Q. (2010). The research on the mechanical and tribological properties of carbon fiber and carbon nanotube-filled PEEK composite. Polymer Composites, 31, 1315–1320. 

    Article  Google Scholar 

  32. Huang, Y., Qiao, J., He, K., Bliznakov, S., Sutter, E., Chen, X., Luo, D., Meng, F., Su, D., Decker, J., Ji, W., Ruoff, R. S., & Sutter, P. (2016). Interaction of black phosphorus with oxygen and water. Chemistry of Materials, 28, 8330–8339. 

    Article  Google Scholar 

  33. Edmonds, M. T., Tadich, A., Carvalho, A., Ziletti, A., O’Donnell, K. M., Koenig, S. P., Coker, D. F., Ozyilmaz, B., Neto, A. H. C., & Fuhrer, M. S. (2015). Creating a stable pxide at the surface of black phosphorus. ACS Applied Materials and Interfaces, 7, 14557–14562. 

    Article  Google Scholar 

  34. Ji, Z. J., Zhang, L., Xie, G. X., Xu, W. H., Guo, D., Luo, J. B., & Prakash, B. (2020). Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials. Friction, 8, 813–846. 

    Article  Google Scholar 

  35. Lv, Y., Wang, W., Xie, G. X., & Luo, J. B. (2018). Self-lubricating PTFE-based composites with black phosphorus nanosheets. Tribology Letters, 66, 61. 

    Article  Google Scholar 

  36. Sandeep Kumar, Y., Rajeswara Rao, K. V. S., & Sunil, R. Y. (2020). Investigation of wear behavior of biopolymers for total knee replacements through in vitro experimentation. International Journal of Engineering Education, 33, 1560–1566. 

    Article  Google Scholar 

  37. Qin, W., Li, Y., Ma, J., Liang, Q., Cui, X. H., Jia, H., & Tang, B. (2020). Osseointegration and biosafety of graphene oxide wrapped porous CF/PEEK composites as implantable materials: The role of surface structure and chemistry. Dental Materials, 36, 1289–1302. 

    Article  Google Scholar 

  38. Mei, S. Q., Yang, L. L., Pan, Y. K., Wang, D. Q., Wang, X. H., Tang, T. T., & Wei, J. (2019). Influences of tantalum pentoxide and surface coarsening on surface roughness, hydrophilicity, surface energy, protein adsorption and cell responses to PEEK based biocomposite. Colloids and Surface B Biointerfaces, 174, 207–215. 

    Article  Google Scholar 

  39. Xie, S. S., Liu, B. R., Fu, S. P., Wang, W., Yin, Y. H., Li, N., Chen, W., Liu, J. X., & Liu, D. F. (2014). GLP-2 suppresses LPS-induced inflammation in macrophages by inhibiting ERK phosphorylation and NF-kappaB activation. Cellular Physiology and Biochemisiry, 34, 590–602. 

    Article  Google Scholar 

  40. Sarfraz, M., Roa, W., Bou-Chacra, N., & Lobenberg, R. (2016). Inflammation caused by nanosized delivery systems: Is there a benefit? Molecular Pharmaceutics, 13, 3270–3278. 

    Article  Google Scholar 

  41. Ouyang, L. P., Zhao, Y. C., Jin, G. D., Lu, T., Li, J. H., Qiao, Y. Q., Ning, C. Q., Zhang, X. L., Chu, P. K., & Liu, X. Y. (2016). Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK. Biomaterials, 83, 115–126. 

    Article  Google Scholar 

  42. Zhang, C. D., Wang, Y. T., Ma, J. J., Zhang, Q. R., Wang, F., Liu, X. H., & Xia, T. (2020). Black phosphorus for fighting antibiotic-resistant bacteria: What is known and what is missing. Science of The Total Environment, 721, 137740. 

    Article  Google Scholar 

  43. Tang, Z. X., & Lv, B. F. (2014). MgO nanoparticles as antibacterial agent: Preparation and activity. Brazilian Journal of Chemical Engineering, 31, 591–601. 

    Article  Google Scholar 

  44. Mei, L. Q., Zhu, S., Yin, W. Y., Chen, C. Y., Nie, G. J., Gu, Z. J., & Zhao, Y. L. (2020). Two-dimensional nanomaterials beyond graphene for antibacterial applications: Current progress and future perspectives. Theranostics, 10, 757–781. 

    Article  Google Scholar 

  45. Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30, 499–511. 

    Article  Google Scholar 

  46. Zhang, D. D., Liu, H. M., Shu, X. L., Feng, J., Yang, P., Dong, P., Xie, X. B., & Shi, Q. S. (2020). Nanocopper-loaded black phosphorus nanocomposites for efficient synergistic antibacterial application. Journal of Hazardous Materials, 393, 122317. 

    Article  Google Scholar 

  47. Li, J., Qian, S., Ning, C. Q., & Liu, X. Y. (2016). rBMSC and bacterial responses to isoelastic carbon fiber-reinforced poly(ether-ether-ketone) modified by zirconium implantation. Journal of Materials Chemistry B, 4, 96–104. 

    Article  Google Scholar 

  48. Lu, T., Li, J., Qian, S., Cao, H. L., Ning, C. Q., & Liu, X. Y. (2016). Enhanced osteogenic and selective antibacterial activities on micro-/nano-structured carbon fiber reinforced polyetheretherketone. Journal of Materials Chemistry B, 4, 2944–2953. 

    Article  Google Scholar 

  49. Wang, M., Bhardwaj, G., & Webster, T. J. (2017). Antibacterial properties of PEKK for orthopedic applications. International Journal of Nanomedicine, 12, 6471–6476. 

    Article  Google Scholar 

  50. Huang, H. H., Ho, C. T., Lee, T. H., Lee, T. L., Liao, K. K., & Chen, F. L. (2004). Effect of surface roughness of ground titanium on initial cell adhesion. Biomolecular Engineering, 21, 93–97. 

    Article  Google Scholar 

  51. Shiju, V. P., Abhijith, N. V., & Sudeep, U. (2019). Experimental study on the influence of hydrophilicity on bacterial adhesion in bioimplants. Journal of Physics: Conference Series, 1355, 012028. 

    Article  Google Scholar 

  52. Tan, F., Nasiri, M., & Al-Rubeai, M. (2010). In vitro osteoblastic cell activity on bioglass-derived bioceramic surfaces deposited by a novel coblast technique. Journal of Biotechnology, 150, 105–115. 

    Article  Google Scholar 

  53. Sawase, T., Jimbo, R., Baba, K., Shibata, Y., Ikeda, T., & Atsuta, M. (2008). Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition. Clinical Oral Implants Research, 19, 491–496. 

    Article  Google Scholar 

  54. Fang, H. W., Kao, W. Y., Lin, P. I., Chang, G. W., Huang, Y. J., & Chen, R. M. (2015). Effects of polypropylene carbonate/poly(d, l-lactic) acid/tricalcium phosphate elastic composites on improving osteoblast maturation. Annals of Biomedical Engineering, 43, 1999–2009. 

    Article  Google Scholar 

  55. Ghezzi, B., Lagonegro, P., Attolini, G., Rotonda, P. M., Cornelissen, C., Ponraj, J. S., Parisi, L., Passeri, G., Rossi, F., & Macaluso, G. M. (2021). Hydrogen plasma treatment confers enhanced bioactivity to silicon carbide-based nanowires promoting osteoblast adhesion. Materials Science and Engineering: C-Materials for Biological Applications, 121, 111772. 

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Wenbin Cao from the University of Science and Technology Beijing, and also Dr. Ying Li from First Hospital of Shanxi Medical University for the help in sample preparation and antimicrobial testing in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ma.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liang, Q., Qin, W. et al. Wear Resistance, Cytotoxicity and Antibacterial Properties of Polyetheretherketone Composite Modified by Carbon Fiber and Black Phosphorus. J Bionic Eng 19, 155–166 (2022). https://doi.org/10.1007/s42235-021-00121-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00121-9

Keywords

Navigation