Skip to main content
Log in

Quantitative Progress Evaluation of Post-stroke Patients Using a Novel Bimanual Cable-driven Robot

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Rehabilitation is the most effective way to reduce motor impairments in post-stroke patients. This process demands several hours with a specialized therapist. Given resources and personnel shortages, the literature reports a high interest in robotic assisted rehabilitation solutions. Recently, cable-driven robotic architectures are attracting significant research interest for post-stroke rehabilitation. However, the existing cable-driven robots are mostly unilateral devices allowing the rehabilitation only of the most affected limb. This leaves unaddressed the rehabilitation of bimanual activities, which are predominant within the common Activities of Daily Living (ADL). Thus, this paper presents a specific novel design to achieve bimanual rehabilitation tasks that has been named as BiCAR robot. Specifically, this paper provides a full insight on the BiCAR system as well as on its dedicated developed software BiEval. In particular, BiEval software has been developed as based on a serious game strategy and a virtual reality environment to track the patient exercising duration, motion ranges, speeds, and forces over time for achieving a quantitative assessment of the rehabilitation progress. Finally, the paper presents the BiCAR/BiEval capabilities by referring to a pilot Randomized Controlled Trial (RCT). The clinical trials have been used to validate the BiCAR/BiEval in terms of engineering feasibility and user acceptance to achieve an innovative cost-oriented integrated hardware/software device for the bimanual assistive rehabilitation of post-stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. WHO, World Health Organization, [2021–03–02], https://www.who.int/

  2. Tappeiner, L., Ottaviano, E., & Husty, M. L. (2018). Mechanisms and Machine Science,  Cham: Springer, Zug, Switzerland, 50, 174–181.

    Google Scholar 

  3. Hatem, S. M., Saussez, G., Della Faille, M., Prist, V., Zhang, X., Dispa, D., & Bleyenheuft, Y. (2016). Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Frontiers in Human Neuroscience, 10, 1–22.

    Article  Google Scholar 

  4. Nijenhuis, S. M., Prange, G. B., Amirabdollahian, F., Sale, P., Infarinato, F., Nasr, N., Mountain, G., Hermens, H. J., Stienen, A. H. A., Buurke, J. H., & Rietman, J. S. (2015). Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. Journal of NeuroEngineering and Rehabilitation, 12, 89.

    Article  Google Scholar 

  5. Gonçalves, R. S., Alves, T., Carbone, G., & Ceccarelli, M. (2020). Cable-driven robots in physical rehabilitation. In M. K. Habib (Ed.), Advances in Computational Intelligence and Robotics (pp. 52–96). Hershey, IGI Global.

    Google Scholar 

  6. Ceccarelli, M., & Romdhane, L. (2010). Design issues for human-machine platform interface in cable based parallel manipulators for physiotherapy applications. Journal of Zhejiang University Science A, 11, 231–239.

    Article  Google Scholar 

  7. Prange, G. B., Kottink, A. I. R., Buurke, J. H., Eckhardt, M. M., van Keulen-Rouweler, B. J., Ribbers, G. M., & Rietman, J. S. (2015). The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial. Neurorehabilitation and Neural Repair, 29, 174–182.

    Article  Google Scholar 

  8. Rosati, G., Masiero, S., & Rossi, A. (2017). On the use of cable-driven robots in early inpatient stroke rehabilitation. In G. Boschetti & A. Gasparetto (Eds.), Advances in Italian Mechanism Science (pp. 551–558). Italy: Springer. 47.

    Chapter  Google Scholar 

  9. Nunes, W. M., Rodrigues, L. A. O., Oliveira, L. P., Ribeiro, J. F., Carvalho, J. C. M., Gonçalves, R. S. (2011) Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements, International Conference on Rehabilitation Robotics, Zurich, Switzerland

  10. Tyromotion, D. [2021–09–09], https://tyromotion.com/en/produkte/diego/.

  11. Carbone, G., Gherman, B., Ulinici, J., Vaida, C., & Pisla, D. (2017). Design issues for an inherently safe robotic rehabilitation device. In C. Ferraresi & G. Quaglia (Eds.), Mechanisms and Machine Science: Advances in Service and Industrial Robotics (Vol. 49). Cham: Springer, Zug, Switzerland.

    Google Scholar 

  12. Boschetti, G., Carbone, G., & Passarini, C. (2019). Cable failure operation strategy for a rehabilitation cable-driven robot. Robotics, 8, 17.

    Article  Google Scholar 

  13. Laribi, M. A., Carbone, G., & Zeghloul, S. (2019). On the optimal design of cable driven parallel robot with a prescribed workspace for upper limb rehabilitation tasks. Journal of Bionic Engineering, 16, 503–513.

    Article  Google Scholar 

  14. Cafolla, D., Russo, M. E., & Carbone, G. (2019). CUBE, a Cable-driven device for limb rehabilitation. Journal of Bionic Engineering, 16, 492–502.

    Article  Google Scholar 

  15. Ceccarelli, M., Riabtsev, M., Fort, A., Russo, M., Laribi, M. A., & Urizar, M. (2021). Design and experimental characterization of L-CADEL v2, an assistive device for elbow motion. Sensors, 21, 5149.

    Article  Google Scholar 

  16. Russo, M., & Ceccarelli, M. (2020). Analysis of a wearable robotic system for ankle rehabilitation. Machines, 8, 48.

    Article  Google Scholar 

  17. Johnson, M. J., Vanderloos, H. F. M., Burgar, C. G., Shor, P., & Leifer, L. J. (2005). Experimental results using force-feedback cueing in robot-assisted stroke therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 335–348.

    Article  Google Scholar 

  18. Trlep, M., Mihelj, M., Puh, M., & Munih, M. (2011). Rehabilitation robot with patient-cooperative control for bimanual training of hemiparetic subjects. Advanced Robotics, 25, 1949–1968.

    Article  Google Scholar 

  19. Aguiar, P. M., Burdet, E., Caurin, G. A. P., Aroca, R. V., Pedro, L. M. (2017). Instrumented module for investigation of contact forces for use in rehabilitation and assessment of bimanual functionalities. 24th ABCM International Congress of Mechanical Engineering, Curitiba, PR, Brazil.

  20. Cardoso, L. R. L., Matelleto, M. N., Aguiar, P. M., Burdet, E., Caurin, G. A. P., Aroca, R. V., Pedro, L. M. (2017) Upper limb rehabilitation through bicycle controlling. 24th ABCM International Congress of Mechanical Engineering, Curitiba, PR, Brazil

  21. Lim, W. B., Yang, G., Yeo, S. H., & Mustafa, S. K. (2011). A generic force-closure analysis algorithm for cable-driven parallel manipulators. Mechanism and Machine Theory, 46, 1265–1275.

    Article  Google Scholar 

  22. Ming, A., & Higuchi, T. (1994). Study on multiple degree-of-freedom positioning mechanism using wires (Part 1). Journal of the Japan Society of Precision Engineering, 28, 131–138.

    Google Scholar 

  23. Mao, Y., & Agrawal, S. K. (2012). Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 28, 922–931.

    Article  Google Scholar 

  24. Zhang, S., Cao, D., Min, H., Li, S., & Zhang, X. (2020). Design and wrench-feasible workspace analysis of a cable-driven hybrid joint. International Journal of Advanced Robotic Systems, 17, 1–14.

    Google Scholar 

  25. Garofalo, G., Mansfeld, N., Jankowski, J., Ott, C. (2019.) Sliding mode momentum observers for estimation of external torques and joint acceleration. Proceedings—IEEE International Conference on Robotics and Automation, (pp. 6117–6123) Montreal, Canada.

  26. Wang, R., Li, Y. (2021) Analysis and multi-objective optimal design of a planar differentially driven cable parallel robot. Robotica, (pp. 1–17). Cambridge University Press, Cambridge, UK. 04 May 2021. https://doi.org/10.1017/S0263574721000266

  27. Costa, M. V. O. (2018). Force capability of planar cable-driven robots, Master Thesis, Federal University of Santa Catarina, Florianopolis, SC, Brazil

  28. Mehrholz, J., Pohl, M., Platz, T., Platz, T., Kugler, J., Elsner, B. (2015). Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews (vol. 11., pp. 1–112). John Wiley & Sons, Ltd.

  29. Oyman, E., Korkut, M., Ylmaz, C., Bayraktaroglu, Z., Arslan, M. (2021). Design and control of a cable-driven rehabilitation robot for upper and lower limbs. Robotica, (pp. 1–37). Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/S0263574721000357. Accessed 19 Apr 2021.

  30. Masiero, S., Poli, P., Rosati, G., Zanotto, D., Iosa, M., Paolucci, S., & Morone, G. (2014). The value of robotic systems in stroke rehabilitation. Expert Review of Medical Devices, 11, 187–198.

    Article  Google Scholar 

  31. Masiero, S., Armani, M., & Rosati, G. (2011). Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: Focused review and results of new randomized controlled trial. Journal of Rehabilitation Research and Development, 48, 355–366.

    Article  Google Scholar 

  32. Prange, G. B., Kottink, A. I. R., Buurke, J. H., Rietman, J. S. (2013). Application of arm support training in sub-acute stroke rehabilitation: first results on effectiveness and user experiences. IEEE International Conference on Rehabilitation Robotics, Seattle, USA.

  33. Masiero, S., Celia, A., Rosati, G., & Armani, M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of Physical Medicine and Rehabilitation, 88, 142–149.

    Article  Google Scholar 

  34. Masiero, S., Armani, M., Ferlini, G., Rosati, G., & Rossi, A. (2014). Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabilitation and Neural Repair, 28, 377–386.

    Article  Google Scholar 

  35. Singh, D. K. A., Nordin, N. A. M., Aziz, A. A., Zarim, S. N. A., Kooi, L. B., Ching, S. L. (2013). Virtual reality balance games to improve lower limb function among adults with chronic stroke. Proceedings of the 7th International Convention on Rehabilitation Engineering and Assistive Technology (i-CREATe '13) (pp. 1–3). Midview City, Singapore.

  36. Alves, T., Gonçalves, R. S., Carbone, G., Ceccarellli, M. (2019). Cable-driven robots for circular trajectory exercises in rehabilitation, 25th ABCM International Congress of Mechanical Engineering, Uberlândia, MG, Brazil

  37. Blanding, D. L. (1992). Principles of Exact Constraint Mechanical Design. [S.I.], Eastman Kodak Company, Rochester, USA. 

    Google Scholar 

  38. Ibarra, J. C. P. (2014) Adaptive impedance control applied to robotic ankle rehabilitation, Master Thesis, São Paulo University, São Paulo, Brazil

  39. Roy, A., Forrester, L. W., & Macko, R. F. (2011). Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke. Journal of Rehabilitation Research and Development, 48, 417–429.

    Article  Google Scholar 

  40. IMI, Intrinsic Motivation Inventory (IMI), [2021–08–08], http://selfdeterminationtheory.org/intrinsic-motivation-inventory

Download references

Funding

This project was partially funded by UFU, FAPEMIG, CNPQ, and CAPES (Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Alves.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, T., Gonçalves, R.S. & Carbone, G. Quantitative Progress Evaluation of Post-stroke Patients Using a Novel Bimanual Cable-driven Robot. J Bionic Eng 18, 1331–1343 (2021). https://doi.org/10.1007/s42235-021-00102-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00102-y

Keywords

Navigation