Skip to main content
Log in

Cormorant Webbed-feet Support Water-surface Takeoff: Quantitative Analysis via CFD

  • Research Paper
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The bio-inspired aerial–aquatic vehicle offers attractive perspectives for future intelligent robotic systems. Cormorant’s webbed-feet support water-surface takeoff is a typical locomotion pattern of amphibious water birds, but its highly maneuverable and agile kinetic behaviors are inconvenient to measure directly and challenging to calculate convergently. This paper presents a numerical Computational Fluid Dynamic (CFD) technique to simulate and reproduce the cormorant's surface takeoff process by modeling the three-dimensional biomimetic cormorant. Quantitative numerical analysis of the fluid flows and hydrodynamic forces around a cormorant’s webbed feet, body, and wings are conducted, which are consistent with experimental results and theoretical verification. The results show that the webbed feet indeed produced a large majority of the takeoff power during the initial takeoff stage. Prior lift and greater angle of attack are generated to bring the body off the water as soon as possible. With the discussion of the mechanism of the cormorant’s water-surface takeoff and the relevant characteristics of biology, the impetus and attitude adjustment strategies of the aerial–aquatic vehicle in the takeoff process are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yang, X. B., Wang, T. M., Liang, J. H., Yao, G. C., & Liu, M. (2015). Survey on the novel hybrid aquatic–aerial amphibious aircraft: Aquatic unmanned aerial vehicle (aquauav). Progress in Aerospace Sciences, 74, 131–151.

    Article  Google Scholar 

  2. Siddall, R., & Kovač, M. (2014). Launching the aquamav: Boinspired design for aerial–aquatic robotic platforms. Bioinspiration and Biomimetics, 9, 031001.

    Article  Google Scholar 

  3. Wang, Y. P., Yang, X. B., Chen, Y. F., Wainwright, D. K., Kenaley, C. P., Gong, Z. Y., Liu, Z. M., Liu, H., Guan, J., Wang, T. M., Weaver, J. C., Wood, R. J., & Wen, L. (2017). A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Science Robotics, 2, eaan8072.

    Article  Google Scholar 

  4. Zhuo, S. Y., Zhao, Z. G., Xie, Z. X., Hao, Y. F., Xu, Y. C., Zhao, T. Y., Li, H. J., Knubben, E. M., Wen, L., Jiang, L., & Liu, M. J. (2020). Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Science Advances, 6, eaax1464.

    Article  Google Scholar 

  5. Wang, R., Wang, S., Wang, Y., Tan, M., & Yu, J. Z. (2019). A paradigm for path following control of a ribbon-fin propelled biomimetic underwater vehicle. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49, 482–493.

    Article  Google Scholar 

  6. Cutkosky, M. R. (2015). Climbing with adhesion: From bioinspiration to biounderstanding. Interface Focus, 5, 20150015.

    Article  Google Scholar 

  7. Liang, J. H., Yang, X. B., Wang, T. M., Yao, G. C., & Zhao, W. D. (2013). Design and experiment of a bionic gannet for plunge-diving. Journal of Bionic Engineering, 10, 282–291.

    Article  Google Scholar 

  8. Hou, T.G., Yang, X.B., Su, H.H., Jiang, B.H., Chen, L.K., Wang, T.M., Liang, J.H. (2019). Design and experiments of a squid-like aquatic–aerial vehicle with soft morphing fins and arms. In International Conference on Robotics and Automation (ICRA) (pp. 4681–4687), Montreal, Canada

  9. Liang, J. H., Yao, G. C., Wang, T. M., Yang, X. B., Zhao, W. D., Song, G., & Zhang, Y. C. (2014). Wing load investigation of the plunge-diving locomotion of a gannet morus inspired submersible aircraft. Science China Technological Sciences, 57, 390–402.

    Article  Google Scholar 

  10. Chen, Y. F., Wang, H. Q., Helbling, E. F., Jafferis, N. T., Zufferey, R., Ong, A., Ma, K., Gravish, N., Chirarattananon, P., Kovac, M., & Wood, R. J. (2017). A biologically inspired, flapping-wing, hybrid aerial–aquatic microrobot. Science Robotics, 2, eaao5619.

    Article  Google Scholar 

  11. Zufferey, R., Ancel, A. O., Farinha, A., Siddall, R., Armanini, S. F., Nasr, M., Brahmal, R. V., & Kennedy, G. (2019). Kovac M Consecutive aquatic jump-gliding with water-reactive fuel. Science Robotics, 4, eaax7330.

    Article  Google Scholar 

  12. Chang, B., Myeong, J., Virot, E., Clanet, C., Kim, H.-Y., & Jung, S. (2019). Jumping dynamics of aquatic animals. Journal of The Royal Society Interface, 16, 20190014.

    Article  Google Scholar 

  13. Norberg, R. A., & Norberg, U. M. (1971). Take-off, landing, and flight speed during fishing flights of gavia stellata (pont.). Ornis Scandinavica, 2, 55.

    Article  Google Scholar 

  14. Clifton, G. T., Hedrick, T. L., & Biewener, A. A. (2015). Western and clark’s grebes use novel strategies for running on water. Journal of Experimental Biology, 218, 1235–1243.

    Article  Google Scholar 

  15. Ribak, G., Weihs, D., & Arad, Z. (2005). Water retention in the plumage of diving great cormorants phalacrocorax carbo sinensis. Journal of Avian Biology, 36, 89–95.

    Article  Google Scholar 

  16. Kato, A., Ropert-Coudert, Y., Grémillet, D., & Cannell, B. (2006). Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Marine Ecology Progress Series, 308, 293–301.

    Article  Google Scholar 

  17. White, C. R., Martin, G. R., & Butler, P. J. (2008). Pedestrian locomotion energetics and gait characteristics of a diving bird, the great cormorant, phalacrocorax carbo. Journal of Comparative Physiology B, 178, 745–754.

    Article  Google Scholar 

  18. Ribak, G., Weihs, D., & Arad, Z. (2005). Submerged swimming of the great cormorant phalacrocorax carbo sinensis is a variant of the burst-and-glide gait. Journal of Experimental Biology, 208, 3835–3849.

    Article  Google Scholar 

  19. Simons, E. L. R. (2010). Forelimb skeletal morphology and flight mode evolution in pelecaniform birds. Zoology (Jena, Germany), 113, 39–46.

    Article  Google Scholar 

  20. Clifton, G. T., Carr, J. A., & Biewener, A. A. (2018). Comparative hindlimb myology of foot-propelled swimming birds. Journal of Anatomy, 232, 105–123.

    Article  Google Scholar 

  21. Clifton, G. T., & Biewener, A. A. (2018). Foot-propelled swimming kinematics and turning strategies in common loons. Journal of Experimental Biology, 221, jeb18831.

    Google Scholar 

  22. Zhang, C. C., Wu, Z. Y., Zhang, X. M., Yue, Y. L., & Wang, J. (2018). Effect of feather elasticity of kingfisher wing on droplet impact dynamics. Journal of Bionic Engineering, 15, 731–740.

    Article  Google Scholar 

  23. Johansson, L. C., & Norberg, R. Å. (2003). Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds. Nature, 424, 65–68.

    Article  Google Scholar 

  24. Dong, Y.X., Liang, J.H., Yang, X.B., Huang, J.G., Xue, X.Q., Fan, Y.B. (2017) Modeling and simulation of cormorant’s webbed-feet assisted take-off from water surface. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1659–1664), Macau, China.

  25. Sharma, D., Erriguible, A., & Amiroudine, S. (2017). Numerical modeling of the impact pressure in a compressible liquid medium: application to the slap phase of the locomotion of a basilisk lizard. Theoretical and Computational Fluid Dynamics, 31, 281–293.

    Article  Google Scholar 

  26. Zhou, H., Hu, T. J., Low, K. H., Shen, L. C., Ma, Z. W., Wang, G. M., & Xu, H. J. (2015). Bio-inspired flow sensing and prediction for fish-like undulating locomotion: a cfd-aided approach. Journal of Bionic Engineering, 12, 406–417.

    Article  Google Scholar 

  27. Adkins, D., & Yan, Y. Y. (2006). CFD simulation of fish-like body moving in viscous liquid. Journal of Bionic Engineering, 3, 147–153.

    Article  Google Scholar 

  28. Deng, J., Zhang, L. X., Liu, Z. Y., & Mao, X. R. (2019). Numerical prediction of aerodynamic performance for a flying fish during gliding flight. Bioinspiration & Biomimetics, 14, 046009.

    Article  Google Scholar 

  29. Hou, T. G., Yang, X. B., Wang, T. M., Liang, J. H., Li, S. W., & Fan, Y. B. (2020). Locomotor transition: How squid jet from water to air. Bioinspiration & Biomimetics, 15, 036014.

    Article  Google Scholar 

  30. Wang, T. M., Yang, X. B., Liang, J. H., Yao, G. C., & Zhao, W. D. (2013). CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving. Bioinspiration & Biomimetics, 8, 036006.

    Article  Google Scholar 

  31. Crandell, K. E., Howe, R. O., & Falkingham, P. L. (2019). Repeated evolution of drag reduction at the air–water interface in diving kingfishers. Journal of The Royal Society Interface, 16, 20190125.

    Article  Google Scholar 

  32. Huang, J. G., Wang, T. M., Lueth, T. C., Liang, J. H., & Yang, X. B. (2020). CFD based investigation on the hydroplaning mechanism of a cormorant’s webbed foot propulsion. IEEE Access, 8, 31551–31561.

    Article  Google Scholar 

  33. Huang, J. G., Sun, Y. L., Wang, T. M., Lueth, T. C., Liang, J. H., & Yang, X. B. (2020). Fluid-structure interaction hydrodynamics analysis on a deformed bionic flipper with non-uniformly distributed stiffness. IEEE Robotics and Automation Letters, 5, 4657–4662.

    Article  Google Scholar 

  34. ANSYS fluent tutorial guide 18. ANSYS FLUENT, 2018.

  35. Huang, J.G., Liang, J.H., Wang, T.M., Chen, H.Y., Li, J.Y., Yang, X.B. Numerical analysis of the body, webbed-Feet, and wings during cormorant’s take off. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 94–99), Kuala Lumpur, Malaysia

  36. Shen, Z. R., Wan, D. C., & Carrica, P. M. (2015). Dynamic overset grids in openfoam with application to kcs self-propulsion and maneuvering. Ocean Engineering, 108, 287–306.

    Article  Google Scholar 

  37. Xue, X.Q., Zhao, X.F., Huang, J.G., Yang, X.B., Yao, G.C., Liang, J.H., Zhang, D.B. (2016). Experiments and analysis of cormorants’ density, wing loading and webbed feet loading. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 83–87), Qingdao, China

  38. Huang, J.G., Gong, X., Wang, Z.Y., Xue, X.Q., Yang, X.B., Liang, J.H., Zhang, D.B. (2016). The kinematics analysis of webbed feet during cormorants’ swimming. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 301–306), Qingdao, China

  39. Hu, S. S., Wang, H. Y., Wang, Y., & Liu, Z. S. (2018). Design of a novel six-axis wrist force sensor. Sensors, 18, 3120.

    Article  Google Scholar 

  40. Wang, J., Faltinsen, O. M., & Lugni, C. (2019). Unsteady hydrodynamic forces of solid objects vertically entering the water surface. Physics of Fluids, 31, 027101.

    Article  Google Scholar 

  41. Molland, A. F., Turnock, S. R., & Hudson, D. A. (2017). Ship resistance and propulsion: Practical estimation of ship propulsive power (2nd ed.). Cambridge University Press.

    Book  Google Scholar 

  42. Rockenbauer, F. M., Jeger, S. L., Beltran, L., Berger, M. A., Harms, M., Kaufmann, N., Rauch, M., Reinders, M., Lawrance, N., Stastny, T., & Siegwart, R. Y. (2021). Dipper: A dynamically transitioning aerial–aquatic unmanned vehicle. Robotics Science and Systems (RRS). https://doi.org/10.1560/RSS.2021.XVII.048

    Article  Google Scholar 

  43. Provini, P., Tobalske, B. W., Crandell, K. E., & Abourachid, A. (2012). Transition from leg to wing forces during take-off in birds. Journal of Experimental Biology, 215, 4115–4124.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51475028, 61703023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhong Liang or Xingbang Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 121659 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Liang, J., Yang, X. et al. Cormorant Webbed-feet Support Water-surface Takeoff: Quantitative Analysis via CFD. J Bionic Eng 18, 1086–1100 (2021). https://doi.org/10.1007/s42235-021-00090-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00090-z

Keywords

Navigation