Skip to main content
Log in

A Study on the Biocompatibility of MgO Coating Prepared by Anodic Oxidation Method on Magnesium Metal

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Magnesium (Mg), is widely used for the bone repair in oral and orthopedic application due to excellent bioactivity, degradation and biocompatibility. However, the range of application is greatly limited because of the rapid degradation of Mg metal in the body. Surface modification is an effective method to enhance the corrosion resistance and reduce the degradation rate of Mg metal. In the present study, pure Mg metal (P-Mg) was subjected to alkali-heat treatment (AT-Mg) or anodic oxidation-heat treatment (AO-HT-Mg). Both AT-Mg and AO-HT-Mg had a layer of MgO on their surfaces after treatment. Then the effects of MgO coating on corrosion resistance, bioactivity, Mesenchymal Stem Cells’ (MSCs) proliferation, adhesion and osteogenic differentiation, and the bone repair capability of Mg metal were investigated. We found both AT-Mg and AO-HT-Mg had stronger corrosion resistance than P-Mg. MSCs on both AT-Mg and AO-HT-Mg had higher expression of proteins and genes of ALP, OCN, Col-I and Runx2 than those on P-Mg. They also showed better bone repair property than P-Mg in vivo. In general, MgO layer formed by anodic oxidation-heat treatment had better resistance and biocompatibility than that produced by alkali-heat treatment. This study indicated the MgO coating not only improved the corrosion resistance of Mg metal, but also promoted the osteogenic differentiation of MSCs and bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling. Journal of Biomedical Materials Research Part A, 2007, 81, 757–765.

    Article  Google Scholar 

  2. Tan L L, Yu X M, Wan P, Yang K. Biodegradable materials for bone repairs: A review. Journal of Materials Science & Technology, 2013, 29, 503–513.

    Article  Google Scholar 

  3. Song G L. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49, 1696–1701.

    Article  Google Scholar 

  4. Hoppe A, Guldal N S, Boccaccini A R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011, 32, 2757–2774.

    Article  Google Scholar 

  5. Zhao S F, Jiang Q H, Peel S, Wang X X, He F M. Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration. Clinical Oral Implant Research, 2013, 100, 34–41.

    Article  Google Scholar 

  6. Lu W C, Pringa E, Chou L S. Effects of magnesium on the osteogenesis of normal human osteoblasts. Magnesium Research, 2017, 30, 42–52.

    Google Scholar 

  7. Witte F. The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 2010, 6, 1680–1692.

    Article  Google Scholar 

  8. Han P, Cheng P F, Zhang S X, Zhao C L, Ni J H, Zhang Y Z, Zhong W R, Hou P, Zhang X N, Zheng Y F, Chai Y M. In vitro and in vivo studies on the degradation of high-purity Mg (99.99 wt%) screw with femoral intracondylar fractured rabbit model. Biomaterials, 2015, 64, 57–69.

    Article  Google Scholar 

  9. Moghaddam N S, Andani M T, Amerinatanzi A, Haberland C, Huff S, Miller M, Elahinia M, Dean D. Metals for bone implants: Safety, design, and efficacy. Biomanufacturing Reviews, 2016, 1, https://doi.org/10.1007/s40898-016-0001-2.

  10. Seitz J M, Eifler R, Bach F W, Maier H J. Magnesium degradation products: Effects on tissue and human metabolism. Journal of Biomedical Materials Research Part A, 2014, 102, 3744–3753.

    Article  Google Scholar 

  11. Jacobs J J, Hallab N J, Skipor A K, Urban R M. Metal degradation products: A cause for concern in metal-metal bearings? Clinical Orthopaedics and Related Research, 2003, 417, 139–147.

    Google Scholar 

  12. Niki Y, Matsumoto H, Suda Y, Otani T, Fujikawa K, Toyama Y, Hisamori N, Nozue A. Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials, 2003, 24, 1447–1457.

    Article  Google Scholar 

  13. Staiger M P, Pietak A M, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, 27, 1728–1734.

    Article  Google Scholar 

  14. Zeng R, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008, 10, B3–B14.

    Article  Google Scholar 

  15. Li N, Zheng Y F. Novel magnesium alloys developed for biomedical application: A review. Journal of Materials Science & Technology, 2013, 29, 489–502.

    Article  Google Scholar 

  16. Zhang S X, Zhang X N, Zhao C L, Li J N, Song Y, Xie C Y, Tao H R, Zhang Y, He Y H, Jiang Y, Bian Y J. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia, 2010, 6, 626–640.

    Article  Google Scholar 

  17. Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science & Engineering C–Materials Biological Applications, 2016, 68, 948–963.

    Article  Google Scholar 

  18. Chen Y J, Xu Z G, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia, 2014, 10, 4561–4573.

    Article  Google Scholar 

  19. Nattrass C, Horwell C J, Damby D E, Brown D, Stone V. The effect of aluminium and sodium impurities on the in vitro toxicity and proinflammatory potential of cristobalite. Environmental Research, 2017, 159, 164–175.

    Article  Google Scholar 

  20. Drynda A, Deinet N, Braun N, Peuster M. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. Journal of Biomedical Materials Research Part A, 2009, 91, 360–369.

    Article  Google Scholar 

  21. Peng Q M, Huang Y D, Zhou L, Hort N, Kainer K U. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials, 2010, 31, 398–403.

    Article  Google Scholar 

  22. Wu G S, Ibrahim J M, Chu P K. Surface design of biodegradable magnesium alloys–A review. Surface and Coatings Technology, 2013, 233, 2–12.

    Article  Google Scholar 

  23. Hornberger H, Virtanen S, Boccaccini A R. Biomedical coatings on magnesium alloys–A review. Acta Biomaterialia, 2012, 8, 2442–2455.

    Article  Google Scholar 

  24. Wen C L, Guan S K, Peng L, Ren C X, Wang X, Hu Z H. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science, 2009, 255, 6433–6438.

    Article  Google Scholar 

  25. Wang Y M, Wang F H, Xu M J, Zhao B, Guo L X, Ouyang J H. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application. Applied Surface Science, 2009, 255, 9124–9131.

    Article  Google Scholar 

  26. Daroonparvar M, Yajid M A M, Yusof N M, Bakhsheshi-Rad H R. Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives. Journal of Alloys and Compounds, 2016, 688, 841–857.

    Article  Google Scholar 

  27. Lorenz C, Brunner J G, Kollmannsberger P, Jaafar L, Fabry B, Virtanen S. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomaterialia, 2009, 5, 2783–2789.

    Article  Google Scholar 

  28. Al-Abdullat Y, Tsutsumi S, Nakajima N, Ohta M, Kuwahara H, Ikeuchi K. Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank’s solution for new biomaterial applications. Materials Transactions, 2001, 42, 1777–1780.

    Article  Google Scholar 

  29. Zeng R C, Li X T, Liu Z G, Zhang F, Li S Q, Cui H Z. Corrosion resistance of Zn–Al layered double hydroxide/ poly(lactic acid) composite coating on magnesium alloy AZ31. Frontiers of Materials Science, 2015, 9, 355–365.

    Article  Google Scholar 

  30. Zhu Y Y, Wu G M, Zhang Y H, Zhao Q. Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31. Applied Surface Science, 2011, 257, 6129–6137.

    Article  Google Scholar 

  31. Feng J, Chen Y, Liu X H, Liu T D, Zou L Y, Wang Y T, Ren Y M, Fan Z F, Lv Y Z, Zhang M L. In-situ hydrothermal crystallization Mg(OH)2 films on magnesium alloy AZ91 and their corrosion resistance properties. Materials Chemistry and Physics, 2013, 143, 322–329.

    Article  Google Scholar 

  32. Li L, Zhang M, Li Y, Zhao J, Qin L, Lai Y X. Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: A review. Regenerative Biomaterials, 2017, 4, 129–137.

    Article  Google Scholar 

  33. Janning C, Willbold E, Vogt C, Nellesen J, Meyer-Lindenberg A, Windhagen H, Thorey F, Witte F. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomaterialia, 2010, 6, 1861–1868.

    Article  Google Scholar 

  34. Zhao D W, Witte F, Lu F Q, Wang J L, Li J L, Qin L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials, 2017, 112, 287–302.

    Article  Google Scholar 

  35. Chen X B, Birbilis N, Abbott T B. A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium. Corrosion Science, 2011, 53, 2263–2268.

    Article  Google Scholar 

  36. Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Akagawa Y, Hamada Y, Takahashi J, Matsuura N. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. Journal of Biomedical Materials Research Part B, 2002, 62, 99–105.

    Article  Google Scholar 

  37. Sezer N, Evis Z, Kayhan S M, Tahmasebifar A, Koc M. Review of magnesium-based biomaterials and their applications. Journal of Magnesium and Alloys, 2018, 6, 23–43.

    Article  Google Scholar 

  38. Wang J L, Tang J, Zhang P, Li Y D, Wang J, Lai Y X, Qin L. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: A general review. Journal Biomedical Materials Research Part B–Applied Biomaterials, 2012, 100, 1691–1701.

    Article  Google Scholar 

  39. Gao B, Hao S Z, Zou J X, Wu W Y, Tu G F, Dong C. Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy. Surface and Coatings Technology, 2007, 201, 6297–6303.

    Article  Google Scholar 

  40. Ma N, Chen Y M, Yang B C. Magnesium metal–A potential biomaterial with antibone cancer properties. Journal of Biomedical Materials Research Part A, 2014, 102, 2644–2651.

    Article  Google Scholar 

  41. Chen Y M, Xiao M, Zhao H, Yang B C. On the antitumor properties of biomedical magnesium metal. Journal of Materials Chemistry B, 2015, 3, 849–858.

    Article  Google Scholar 

  42. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27, 2907–2915.

    Article  Google Scholar 

  43. Xiao M, Biao M N, Chen Y M, Xie M J, Yang B C. Regulating the osteogenic function of rhBMP 2 by different titanium surface properties. Journal of Biomedical Materials Research Part A, 2016, 104, 1882–1893.

    Article  Google Scholar 

  44. Biao M N, Chen Y M, Xiong S B, Wu B Y, Yang B C. Synergistic effects of fibronectin and bone morphogenetic protein on the bioactivity of titanium metal. Journal of Biomedical Materials Research Part A, 2017, 105, 2485–2498.

    Article  Google Scholar 

  45. Asri R I M, Harun W S W, Samykano M, Lah N A C, Ghani S A C, Tarlochan F, Raza M R. Corrosion and surface modification on biocompatible metals: A review. Materials Science & Engineering C–Materials Biological Application, 2017, 77, 1261–1274.

    Article  Google Scholar 

  46. Tian P, Liu X Y. Surface modification of biodegradable magnesium and its alloys for biomedical applications. Regenerative Biomaterials, 2015, 2, 135–151.

    Article  Google Scholar 

  47. Wang X, Bayan M R, Yu M, Ludlow D K, Liang X. Atomic layer deposition surface functionalized biochar for adsorption of organic pollutants improved hydrophilia and adsorption capacity. International Journal of Evironmental Science and Technology, 2017, 14, 1625–1834.

    Article  Google Scholar 

  48. Pompa L, Rahman Z U, Munoz E, Haider W. Surface characterization and cytotoxicity response of biodegradable magnesium alloys. Materials Science & Engineering C–Materials Biological Application, 2015, 49, 761–768.

    Article  Google Scholar 

  49. Zhang J, Ma X Y, Lin D, Shi H S, Yuan Y, Tang W, Zhou H J, Guo H, Qian J C, Liu C S. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials, 2015, 53, 251–264.

    Article  Google Scholar 

  50. Wang J, Li D D, Liu Q, Yin X, Zhang Y, Jing X Y, Zhang M L. Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance. Electrochimica Acta, 2010, 55, 6897–6906.

    Article  Google Scholar 

  51. Lin F H, Lin C C, Lu C M, Liu H C, Sun J S, Wang C Y. Mechanical properties and histological evaluation of sintered ß-Ca2P2O7 with Na4P2O7.10H2O addition. Biomaterials, 1995, 16, 793–802.

    Article  Google Scholar 

  52. Shadanbaz S, Dias G J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomaterialia, 2012, 8, 20–30.

    Article  Google Scholar 

  53. Hu X N, Yang B C. Conformation change of bovine serum albumin induced by bioactive titanium metals and its effects on cell behaviors. Journal of Biomedical Materials Research Part A, 2014, 102, 1053–1062.

    Article  Google Scholar 

  54. Mori G, Brunetti G, Oranger A, Carbone C, Ballini A, Muzio L L, Colucci S, Mori C, Grassi F R, Grano M. Dental pulp stem cells: Osteogenic differentiation and gene expression. Annals of the New York Academy of Sciences, 2011, 1237, 47–52.

    Article  Google Scholar 

  55. Rathinam E, Rajasekharan S, Chitturi R T, Declercq H, Martens L, Coster D P. Gene expression profiling and molecular signaling of various cells in response to tricalcium silicate cements: A systematic review. Journal of Endodontics, 2016, 42, 1713–1725.

    Article  Google Scholar 

  56. Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World Journal of Stem Cells, 2013, 5, 136–148.

    Article  Google Scholar 

  57. Samavedi S, Whittington A R, Goldstein A S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomaterialia, 2013, 9, 8037–8045.

    Article  Google Scholar 

  58. Komori T. Regulation of osteoblast differentiation by transcription factors. Journal of Cellular Biochemistry, 2006, 99, 1233–1239.

    Article  Google Scholar 

  59. Zreiqat H, Howlett C R, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal of Biomedical Materials Research Part A, 2002, 62, 175–184.

    Article  Google Scholar 

  60. Pietak A, Mahoney P, Dias G J, Staiger M P. Bone-like matrix formation on magnesium and magnesium alloys. Journal of Materials Science–Materials in Medicine, 2008, 19, 407–415.

    Article  Google Scholar 

  61. Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27, 1013–1018.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Program for Research and Development of China (No. 2016YFC1102700), National Nature Science Foundation of China (Nos. 31570966, 31771035), Key Program of Science & Technology Development of Chengdu, China (No. 2015-HM01-00142-SF), Cooperation Program of Sichuan University and Panzhihua City, China (No. 2018CDPZH-15) and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangcheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Lu, X., Zhao, F. et al. A Study on the Biocompatibility of MgO Coating Prepared by Anodic Oxidation Method on Magnesium Metal. J Bionic Eng 17, 76–91 (2020). https://doi.org/10.1007/s42235-020-0006-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-020-0006-7

Keywords

Navigation