Skip to main content
Log in

Effects of Surface Treatments on Tensile, Thermal and Fibre-matrix Bond Strength of Coir and Pineapple Leaf Fibres with Poly Lactic Acid

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Coir Fibres (CF) and Pineapple Leaf Fibres (PALF) are valuable natural fibres which are abundantly available in Malaysia as agricultural wastes. The aim of this study is to investigate the effects of alkali (6%), silane (2%), and calcium hydroxide (6%) on tensile, morphological, thermal, and structural properties of CF and PALF to improve their interfacial bonding with Polylactic Acid (PLA) matrix. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to observe the effectiveness of the chemical treatments in the removal of impurities. Alkali treated fibres yield the lowest fibre diameter and the highest Interfacial Stress Strength (IFSS). Thermogravimetric Analysis (TGA) shows improved thermal stability in silane treated CF and alkali treated PALF. It is assumed that fibre treatments can help to develop biodegradable CF and PALF reinforced PLA biocomposites for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sedan D, Pagnoux C, Smith A, Chotard T. Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. Journal of the European Ceramic Society, 2008, 28, 183–192.

    Article  Google Scholar 

  2. Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil H P S, Salema A A, Inuwa I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 2013, 46, 391–410.

    Article  Google Scholar 

  3. Li X, Tabil L G, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 2007, 15, 25–33.

    Article  Google Scholar 

  4. Faruk O, Bledzki A K, Fink H P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 2012, 37, 1552–1596.

    Article  Google Scholar 

  5. Rachini A, Le Troedec M, Peyratout C, Smith A. Chemical modification of hemp fibers by silane coupling agents. Journal of Applied Polymer Science, 2012, 123, 601–610.

    Article  Google Scholar 

  6. Asim M, Jawaid M, Abdan K, Ishak M R. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering, 2016, 13, 426–435.

    Article  Google Scholar 

  7. Kabir M, Wang H, Lau K, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 2012, 43, 2883–2892.

    Article  Google Scholar 

  8. Van Krevelen D W, Te Nijenhuis K. Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier BV, Amsterdam, Neitherlands, 2009.

    Book  Google Scholar 

  9. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 2011, 42, 856–873.

    Article  Google Scholar 

  10. Arsene M A, Okwo A, Bilba K, Soboyejo A, Soboyejo W. Chemically and thermally treated vegetable fibers for reinforcement of cement-based composites. Materials and Manufacturing Processes, 2007, 22, 214–27.

    Article  Google Scholar 

  11. Van de Weyenberg I, Truong T C, Vangrimde B, Verpoest I. Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1368–1376.

    Article  Google Scholar 

  12. Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B. Performance of pineapple leaf fiber–natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science, 2006, 102, 1974–1984.

    Article  Google Scholar 

  13. Tserki V, Panayiotou C, Zafeiropoulos N. A study of the effect of acetylation and propionylation on the interface of natural fibre biodegradable composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1110–1118.

    Article  Google Scholar 

  14. Zhandarov S, Mäder E. Characterization of fiber/matrix interface strength: Applicability of different tests, approaches and parameters. Composites Science and Technology, 2005, 65, 149–160.

    Article  Google Scholar 

  15. Arbelaiz A, Cantero G, Fernandez B, Mondragon I, Ganan P, Kenny J. Flax fiber surface modifications: Effects on fiber physico mechanical and flax/polypropylene interface properties. Polymer Composites, 2005, 26, 324–332.

    Article  Google Scholar 

  16. Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Progress in Polymer Science, 2006, 31, 576–602.

    Article  Google Scholar 

  17. Thakur V K, Thakur M K, Gupta R K. Review: Raw natural fiber–based polymer composites. International Journal of Polymer Analysis and Characterization, 2014, 19, 256–271.

    Article  Google Scholar 

  18. Kalia S, Kaith B, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites - A review. Polymer Engineering & Science, 2009, 49, 1253–1272.

    Article  Google Scholar 

  19. Torres F, Cubillas M. Study of the interfacial properties of natural fibre reinforced polyethylene. Polymer Testing, 2005, 24, 694–698.

    Article  Google Scholar 

  20. Eichhorn S J, Baillie C A, Zafeiropoulos N, Mwaikambo L Y, Ansell M P, Dufresne A, Entwistle K M, Herrera-Franco P J, Escamilla G C, Groom L, Hughes M, Hill C, Rials T G, Wild P M. Current international research into cellulosic fibres and composites. Journal of Materials Science, 2001, 36, 2107–2131.

    Article  Google Scholar 

  21. Sawpan M A, Pickering K L, Fernyhough A. Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A: Applied Science and Manufacturing, 2011, 42, 888–895.

    Article  Google Scholar 

  22. Sawpan M A, Pickering K L, Fernyhough A. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1189–1196.

    Article  Google Scholar 

  23. Yan L, Chouw N, Yuan X. Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. Journal of Reinforced Plastics and Composites, 2012, 31, 425–437.

    Article  Google Scholar 

  24. Wang B, Panigrahi S, Tabil L, Crerar W. Pre-treatment of flax fibers for use in rotationally molded biocomposites. Journal of Reinforced Plastics and Composites, 2007, 26, 447–463.

    Article  Google Scholar 

  25. Tserki V, Zafeiropoulos N, Simon F, Panayiotou C. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1110–1118.

    Article  Google Scholar 

  26. Rao K M M, Rao K M, Prasad A R. Fabrication and testing of natural fibre composites: Vakka, sisal, bamboo and banana. Materials & Design, 2010, 31, 508–513.

    Article  Google Scholar 

  27. Satyanarayana K G, Arizaga G G, Wypych F. Biodegradable composites based on lignocellulosic fibers - An overview. Progress in Polymer Science, 2009, 34, 982–1021.

    Article  Google Scholar 

  28. Cheung H Y, Ho M P, Lau K T, Cardona F, Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 2009, 40, 655–663.

    Article  Google Scholar 

  29. Rahman M M, Khan M A. Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physicomechanical properties. Composites Science and Technology, 2007, 67, 2369–2276.

    Article  Google Scholar 

  30. Nam T H, Ogihara S, Tung N H, Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Composites Part B: Engineering, 2011, 42, 1648–1656.

    Article  Google Scholar 

  31. Islam M N, Rahman M R, Haque M M, Huque M M. Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 192–198.

    Article  Google Scholar 

  32. Petchwattana N, Covavisaruch S. Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly (lactic acid) and rubber wood sawdust (Hevea brasiliensis). Journal of Bionic Engineering, 2014, 11, 630–637.

    Article  Google Scholar 

  33. Saba N, Paridah M, Jawaid M. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 2015, 76, 87–96.

    Article  Google Scholar 

  34. Yan L, Chouw N, Jayaraman K. Flax fibre and its composites–A review. Composites Part B: Engineering, 2014, 56, 296–317.

    Article  Google Scholar 

  35. Law K N, Daud W R W, Ghazali A. Morphological and chemical nature of fiber strands of oil palm empty-fruit-bunch (OPEFB). BioResources, 2007, 2, 351–362.

    Google Scholar 

  36. Summerscales J, Dissanayake N P, Virk A S, Hall W. A review of bast fibres and their composites. Part 1–Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1329–1335.

    Article  Google Scholar 

  37. Gu H. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Materials & Design, 2009, 30, 3931–3934.

    Article  Google Scholar 

  38. Rosa M F, Chiou B S, Medeiros E S, Wood D F, Williams T G, Mattoso L H C, Orts W J, Imam S H. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresource Technology, 2009, 100, 5196–2202.

    Article  Google Scholar 

  39. Arrakhiz F, El Achaby M, Kakou A C, Vaudreuil S, Benmoussa K, Bouhfid R, Fassi-Fehri O, Qaiss A. Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Materials & Design, 2012, 37, 379–383.

    Article  Google Scholar 

  40. Karthikeyan A, Balamurugan K. Effect of alkali treatment and fiber length on impact behavior of coir fiber reinforced epoxy composites. Journal of Scientific & Industrial Research, 2012, 71, 627–631.

    Google Scholar 

  41. Kabir M, Wang H, Lau K, Cardona F. Tensile properties of chemically treated hemp fibres as reinforcement for composites. Composites Part B: Engineering, 2013, 53, 362–368.

    Article  Google Scholar 

  42. Mukhopadhyay S, Fangueiro R, Arpac Y, Sentürk Ü. Banana fibers–variability and fracture behaviour. Journal of Engineered Fibers & Fabrics, 2008, 3, 39–45.

    Google Scholar 

  43. Hossain M K, Dewan M W, Hosur M, Jeelani S. Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Composites Part B: Engineering, 2011, 42, 1701–1707.

    Article  Google Scholar 

  44. Le Troedec M, Sedan D, Peyratout C, Bonnet J P, Smith A, Guinebretiere R, Gloaguen V, Krausz P. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 2008, 39, 514–522.

    Article  Google Scholar 

  45. Paiva M, Ammar I, Campos A, Cheikh R B, Cunha A. Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 2007, 67, 1132–1138.

    Article  Google Scholar 

  46. Saw S K, Sarkhel G, Choudhury A. Surface modification of coir fibre involving oxidation of lignins followed by reaction with furfuryl alcohol: Characterization and stability. Applied Surface Science, 2011, 257, 3763–3769.

    Article  Google Scholar 

  47. Das M, Chakrabarty D. Thermogravimetric analysis and weathering study by water immersion of alkali treated bamboo fibres. BioResources, 2008, 3, 1051–1062.

    Google Scholar 

  48. Puglia D, Monti M, Santulli C, Sarasini F, De Rosa I M, Kenny J M. Effect of alkali and silane treatments on mechanical and thermal behavior of Phormium tenax fibers. Fibers and Polymers, 2013, 14, 423–427.

    Article  Google Scholar 

  49. Meon M S, Othman M F, Husain H, Remeli M F, Syawal M S M. Improving tensile properties of kenaf fibers treated with sodium hydroxide. Procedia Engineering, 2012, 41, 1587–1592.

    Article  Google Scholar 

  50. Ibrahim N A, Hadithon K A, Abdan K. Effect of fiber treatment on mechanical properties of kenaf fiber-ecoflex composites. Journal of Reinforced Plastics and Composites, 2010, 29, 2192–2198.

    Article  Google Scholar 

  51. Mishra S, Mohanty A, Drzal L T, Misra M, Parija S, Nayak S K, Tripathy S S. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology, 2003, 63, 1377–1385.

    Article  Google Scholar 

  52. Nirmal U, Singh N, Hashim J, Lau S T, Jamil N. On the effect of different polymer matrix and fibre treatment on single fibre pullout test using betelnut fibres. Materials & Design, 2011, 32, 2717–2726.

    Article  Google Scholar 

  53. Sedan D, Pagnoux C, Chotard T, Smith A, Lejolly D, Gloaguen V, Krausz P. Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibres. Journal of Materials Science, 2007, 42, 9336–9342.

    Article  Google Scholar 

  54. Rosa M F, Chiou B S, Medeiros E S, Wood D F, Mattoso L H C, Orts W J, Imam S H. Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibers. Journal of Applied Polymer Science, 2009, 111, 612–618.

    Google Scholar 

  55. Santos E F, Mauler R S, Nachtigall S M. Effectiveness of maleated-and silanized-PP for coir fiber-filled composites. Journal of Reinforced Plastics and Composites, 2009, 28, 2119–2129.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Ministry of Higher Education (Malaysia) for financial support (CSFP-2015) of the first author’s PhD study. The authors are also grateful to UPM for providing Putra grant GP-IPS /2017/9520200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jawaid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siakeng, R., Jawaid, M., Ariffin, H. et al. Effects of Surface Treatments on Tensile, Thermal and Fibre-matrix Bond Strength of Coir and Pineapple Leaf Fibres with Poly Lactic Acid. J Bionic Eng 15, 1035–1046 (2018). https://doi.org/10.1007/s42235-018-0091-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-018-0091-z

Keywords

Navigation