Skip to main content
Log in

Synergistic effect of Bacillus subtilis and benzothiadiazole (Bion®) on the suppression of Fusarium oxysporum and the enhancement of disease resistance in Capsicum annuum

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium wilt disease of pepper caused by Fusarium oxysporum is a devastating disease causing severe crop losses. The present study investigated the efficacy of benzothiadiazole (Bion®) and of indigenous rhizobacteria as potential biocontrol agents to manage this disease. Pathogenicity tests results demonstrated that isolate “F3”, identified as Fusarium oxysporum, caused higher disease severity (85%) than other isolates. Out of eight bacterial strains, isolate “RB4,” identified as Bacillus subtilis, showed a strong antifungal potential by causing higher (60%) mycelial growth reduction of F. oxysporum. The combined in vitro seed treatment with Bion® and B. subtilis increased the germination rate (84%) of pepper seeds. The germination rate caused by the combined treatment was relatively higher than the rates obtained when Bion® (65%) and B. subtilis (79%) were applied individually and significantly higher than those of the infected control (50%). In greenhouse experiments, we also documented a promising reduction in disease severity (64.7% and 70.6%) in plants treated with Bion® and B. subtilis. Moreover, the application of the conventional fungicide “captan” also showed considerable reduction in disease severity (88.2%). These results indicate that the combined application of Bion® and B. subtilis significantly increased their capability to combat fungal pathogens by reducing disease severity. Additionally, the application of B. subtilis and Bion® increased (0.12 and 0.19 g/kg Fw, respectively) the total phenol contents in treated plants, compared to plants treated only with the fungicide and to infected control (0.06 g/kg Fw) plants. The results of the present study suggested that the use of naturally occurring bacterial microbes as putative biocontrol in combination with Bion® may be considered a promising method for the control of Fusarium wilt disease of pepper, and the combined application of these treatments probably induces pathogen resistance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BTH:

Benzothiadiazole (Bion®)

BLAST:

The Basic Local Alignment Search Tool

CFU:

Colony forming units

ITS:

Internal Transcribed Spacer

NA:

Nutrient ager

NCBI:

The National Center for Biotechnology Information

OD:

Optical Density

PDA:

Potato dextrose agar

PR:

Pathogenesis-related

rRNA:

Ribosomal ribonucleic acid

SAR:

Systemic acquired resistance

TPC:

Total Phenols Content

References

  • Abed H, Rouag N, Mouatassem D, Amar R (2016) Screening for Pseudomonas and bacillus antagonistic rhizobacteria strains for the biocontrol of Fusarium wilt of chickpea. Eurasian J Soil scie (EJSS) 5(3):182. https://doi.org/10.18393/ejss.2016.3.182-191

    Article  Google Scholar 

  • Abo-Elyousr KAM, Saad MM, Al-Qurashi AD, Ibrahim OHM, Mousa MAA (2022) Management of Cumin Wilt caused by Fusarium oxysporum using native endophytic Bacteria. Agronomy 12:2510. https://doi.org/10.3390/agronomy12102510

    Article  CAS  Google Scholar 

  • Abo-Elyousr KAM, Ibrahim OHM, Al-Qurashi AD, Mousa MAA, Saad MM (2022a) Biocontrol potential of endophytic Fungi for the Eco-Friendly Management of Root Rot of Cuminum cyminum caused by Fusarium solani. Agronomy 12:2612. https://doi.org/10.3390/agronomy12112612

    Article  CAS  Google Scholar 

  • Abo-Elyousr KAM, Imran M, Almasoudi NM, Ali EF, Hassan S, Sallam NMA, Youssef K, Abdel-Rahim IR, Khalil Bagy HM (2022b) Controlling of Xanthomonas axonopodis pv. phaseoli by induction of phenolic compounds in bean plants using salicylic and benzoic acids. J Plant Pathol 104(3):947–957. https://doi.org/10.1007/s42161-022-01102-5

  • Abo-Elyousr KAM, Mousa AAM, Ibrahim OH (2023) Inducing cumin resistance against Fusarium oxysporum f. sp. cumini using Bion, ascorbic acid and salicylic acid Gesunde Pflanz 1–19. https://doi.org/10.1007/s10343-023-00852-1

  • Adiwena M, Murtilaksono A, Egra S, Hoesain M, Asyiah IN, Pradana AP, Izatika ZN (2023) The effects of micronutrient-enriched media on the efficacy of Bacillus subtilis as biological control agent against Meloidogyne incognita. Biod J Biol Divers 24(1). https://doi.org/10.13057/biodiv/d240105

  • Afordoanyi DM, Diabankana RGC, Komissarov EN, Kuchaev ES, Validov SZ (2023) Characterization of a novel Bacillus glycinifermentans strain MGMM1 based on full genome analysis and phenotypic Properties for Biotechnological Applications. Microorganisms 11(6):1410. https://doi.org/10.3390/microorganisms11061410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2007) Biocontrol of a chickpea root-rotdisease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa. Austral Plant Pathol 36:175–180. https://doi.org/10.1071/AP07006

    Article  Google Scholar 

  • Al-Temimi WK, Aziz SN, Khalaf AA (2023) Production of partially purified collagenase from Bacillus licheniformis and it’s use to tenderize aged Buffalo Meat. Basrah J AgriSci 36(1):75–89

    Article  Google Scholar 

  • Alexis G, Dinka M, Mauricio G (2020) Isolation and identification of soil Bacteria from Extreme environments of Chile and their plant beneficial characteristics. Microorganisms 8:1213. https://doi.org/10.3390/microorganisms8081213

    Article  CAS  Google Scholar 

  • Amini J (2009) Induced resistance in tomato plants against Fusarium wilt invoked by nonpathogenic Fusarium, chitosan and Bion. The Plant Pathol J 25:3256–3262. https://doi.org/10.5423/PPJ.2009.25.3.256

    Article  Google Scholar 

  • Aslam M, Amer H, Shahbaz TS, Rashad RK (2020) Effect of Bion and salicylic acid on peroxidase activity and total phenolics in tomato against Alternaria solani. Pak J AgriSci 57(1):53–62. https://doi.org/10.21162/PAKJAS/20.2020

    Article  Google Scholar 

  • Astha, Sekhon PS (2021) Biochemical basis of systemic acquired resistance induced by different systemic Acquired Resistance (SAR) elicitors in Brassica cultivars challenge inoculated with downy mildew pathogen. J App Nat Sci 13(1):301–307. https://doi.org/10.31018/jans.v13i1.254

    Article  Google Scholar 

  • Attia MS, Elsayed SM, Abdelaziz AM, Ali MM (2023) Potential impacts of Ascophyllum nodosum, Arthrospira platensis extracts and calcium phosphite as therapeutic nutrients for enhancing immune response in pepper plant against Fusarium wilt disease. Biomass Convers Biorefin 1–10. https://doi.org/10.1007/s13399-023-03949-9

  • Atwa MAM, Sarhan EAD, Zian AH (2019) Effect of different inducers on controlling damping-off and wilt diseases of lupine. Arab Univ J Agric Sci Ain Shams Univ Cairo Egypt 27(3):1967–1983

    Google Scholar 

  • Ávalos-Sánchez E, Moreno-Teruel MÁ, López-Martínez A, Molina-Aiz FD, Baptista F, Marín-Membrive P, Valera-Martínez DL (2023) Effect of Greenhouse Film Cover on the Development of Fungal Diseases on Tomato (Solanum lycopersicum L.) and Pepper (Capsicum annuum L.) in a Mediterranean protected crop. Agronomy 13(2):526. https://doi.org/10.3390/agronomy13020526

    Article  CAS  Google Scholar 

  • Barnett HL (1986) In: Hunter BB (ed) Illustrated Genera of Imperfect Fungi, 4th edn. Macmillan Publishing Co., New York

    Google Scholar 

  • Bin L, Shida J, Huifang Z, Yucheng W, Zhihua L (2020) Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function. Microbiol Res 235:126445. https://doi.org/10.1016/j.micres.2020.126445

    Article  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Ann Rev Phytopathol 43:545–580. https://doi.org/10.1146/annurev.phyto.41.052002.095505

    Article  CAS  Google Scholar 

  • Brown W (1924) Two mycological methods: 11 A method of isolatingsingle strains of fungi by cutting out a hyphal tip. Ann Bot 38:402–404

    Google Scholar 

  • Cao S, Jiang B, Yang G, Pan G, Pan Y, Chen F, Gao Z, Dai Y (2023) Isolation and evaluation of Bacillus subtilis RSS-1 as a potential biocontrol agent against Sclerotinia sclerotiorum on oilseed rape. Eur J Plant Pathol 166(1):9–25. https://doi.org/10.1007/s10658-023-02642-x

    Article  CAS  Google Scholar 

  • Coşkun F, Alptekin Y, Demir S (2023) Effects of arbuscular mycorrhizal fungi and salicylic acid on plant growth and the activity of antioxidative enzymes against wilt disease caused by Verticillium dahliae in pepper. Eur J Plant Pathol 165(1):163–177. https://doi.org/10.1007/s10658-022-02596-6

    Article  CAS  Google Scholar 

  • de Los Santos-Villalobos S, Valenzuela-Ruiz V, Montoya-Martínez AC, Parra-Cota FI, Santoyo G, Larsen J (2023) Bacillus cabrialesii subsp. cabrialesii subsp. nov. and Bacillus cabrialesii subsp. tritici subsp. nov., plant growth-promoting bacteria and biological control agents isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. Int J System EvoMicrobiol 73(4):005779. https://doi.org/10.1099/ijsem.0.005779

    Article  CAS  Google Scholar 

  • El-Fatah BEA, Imran M, Abo-Elyousr KAM, Mahmoud AF (2023) Isolation of Pseudomonas syringaepv. Tomato strains causing bacterial speck disease of tomato and marker-based monitoring for their virulence. Mol Biol Rep 50:4917–4930. https://doi.org/10.1007/s11033-023-08302-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkholy AI, Nour MA, Ali HM, Soliman SA (2023) Isolation and identification of Bacillus subtilis for usage as probiotic bacteria. Egy J Dairy Sci (Articles in Press. https://doi.org/10.21608/ejds.2023.199272.1010

    Article  Google Scholar 

  • Ferniah RS, Daryono BS, Kasiamdari RS, Priyatmojo A (2014) Characterization and pathogenicity of Fusarium oxysporum as the Causal Agent of Fusarium Wilt in Chili (Capsicum annuum L). Microbiol Indonesia 8(3):5. https://doi.org/10.5454/mi.8.3.5

    Article  Google Scholar 

  • Figueroa-Brambila KM, Escalante-Beltrán A, Montoya-Martínez AC, Díaz-Rodríguez AM, López-Montoya ND, Parra-Cota FI, de los Santos-Villalobos S (2023) Bacillus cabrialesii: five years of Research on a Novel Species of Biological Control and Plant Growth-Promoting Bacteria. Plants 12(13):2419. https://doi.org/10.3390/plants12132419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Wang Y, Han J, Lu Y, Yue X, Zhang X, Wang Y, Shen S, Zhao J, Ma W, Liu M (2023) Transcriptome analysis reveals resistance induced by Benzothiadiazole against soft rot in chinese cabbage. Sci Hort 315:111978. https://doi.org/10.1016/j.scienta.2023.111978

    Article  CAS  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. John Wiley & sons, USA, pp 25–30

    Google Scholar 

  • Han Z, Wang J, Ding Y, Sun Z, Wang Y, Wang Y, Yang L, Wang Y (2023) New Observation in Biocontrol of Penicillium caperatum against Fusarium oxysporum on Saposhnikovia divaricata and as a plant growth promoter. Fermentation 9(4):361. https://doi.org/10.3390/fermentation9040361

    Article  CAS  Google Scholar 

  • Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Kärenlampi SO, Karjalainen RO (2007) Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agric Food Chem 55(5):1862–1870. https://doi.org/10.1021/jf063452p

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Ali EF, Hassan S, Abo-Elyousr KAM, Sallam NM, Khan MMM, Younas MW (2021) Characterization and sensitivity of Botrytis cinerea to benzimidazole and succinate dehydrogenase inhibitors fungicides, and illustration of the resistance profile. Aus Plant Pathol 50(5):589–601. https://doi.org/10.1007/s13313-021-00803-2

    Article  CAS  Google Scholar 

  • Imran M, Abo-Elyousr KAM, Mousa MA, Saad MM (2022b) A study on the synergetic effect of Bacillus amyloliquefaciens and dipotassium phosphate on Alternaria solani causing early blight disease of tomato. Eur J Plant Pathol 162(1):63–77

    Article  CAS  Google Scholar 

  • Imran M, Abo-Elyousr KAM, Mousa M, Saad MM (2022a) A study on the synergetic effect of Bacillus amyloliquefaciens and dipotassium phosphate on Alternaria solani causing early blight disease of tomato. Eur J Plant Pathol 162(1):63–77. https://doi.org/10.1007/s10658-021-02384-8

    Article  CAS  Google Scholar 

  • Imran M, Abo-Elyousr KAM, Mousa MA, Saad MM (2022c) Screening and biocontrol evaluation of indigenous native Trichoderma spp. against early blight disease and their field assessment to alleviate natural infection. Egy J Biol Pest Control 32(1):40. https://doi.org/10.1186/s41938-022-00544-4

    Article  Google Scholar 

  • Imran M, Abo-Elyousr KAM, El-Sharnouby ME, Ali EF, Sallam NM, Bagy HMK, Abdel-Rahim IR (2023a) Biocontrol potential of Trichoderma harzianum and zinc nanoparticles to mitigate gray mold disease of tomato. Gesunde Pflanz 75(1):51–163. https://doi.org/10.1007/s10343-022-00686-3

    Article  CAS  Google Scholar 

  • Imran M, Abo-Elyousr KAM, AL-Harbi MS, Ali EF, Sallam NMA, Khalil Bagy HM (2023b) Antibacterial efficacy of Clove essential oil against Xanthomonas phaseolipv. Phaseoli and its influence on Pathogen responses in Bean. Gesunde Pflanz 75(2):431–440. https://doi.org/10.1007/s10343-022-00721-3

    Article  CAS  Google Scholar 

  • Imran M, Abo-Elyousr KAM, Mousa MAA, Saad MM (2023c) Use of Trichoderma culture filtrates as a sustainable approach to mitigate early blight disease of tomato and their influence on plant biomarkers and antioxidants production. Front Plant Sci 14:1192818. https://doi.org/10.3389/fpls. 2023

  • Jarecka-Boncela A, Spychalski M, Ptaszek M, Włodarek A, Smiglak M, Kukawka R (2023) The Effect of a New Derivative of Benzothiadiazole on the reduction of fusariosis and increase in growth and development of tulips. Agriculture 13(4):853. https://doi.org/10.3390/agriculture13040853

    Article  CAS  Google Scholar 

  • Kang Y, Carlson R, Tharpe W, Schell MA (1998) Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol 64:3939–3947. https://doi.org/10.1128/AEM.64.10.3939-3947.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur C, Fidanza M, Ervin E, Bais HP (2023) Spo0A-dependent antifungal activity of a plant growth promoting rhizobacteria Bacillus subtilis strain UD1022 against the dollar spot pathogen (Clarireedia jacksonii). Biol Control 105284. https://doi.org/10.1016/j.biocontrol.2023.105284

  • Keshapaga UR, Jathoth K, Singh SS, Gogada R, Burgula S (2023) Characterization of high-yield Bacillus subtilis cysteine protease for diverse industrial applications. Brazilian J Microbiol 54(2):739–752. https://doi.org/10.1007/s42770-023-00992-6

    Article  CAS  Google Scholar 

  • Khatik SK, Kumar L (2014) Studies on the management of Stem Canker Disease of Tomato through Fungicidal Sprays under Green House Conditions. Indian Res J Gen Biotechnol 6(01):359–361

    Google Scholar 

  • Klessig DF, Choi HW, Dempsey DA (2018) Systemic Acquired Resistance and Salicylic Acid: past, Present, and Future. Mol Plant-Microbe Interact 31:871–888. https://doi.org/10.1094/MPMI-03-18-0067-CR

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Kobayashi Y, Hyodo A, Kuwata S, Masuta C, Takeshita M (2023) Benzothiadiazole is superior to salicylic acid for immune priming in Nicotiana benthamiana, and the 2b protein of cucumber mosaic virus affects viral infection dynamics in the artificially induced resistance. J Gen Plant Pathol 89(2):109–121. https://doi.org/10.1007/s10327-022-01113-1

    Article  CAS  Google Scholar 

  • Kumari S, Khanna V (2019) Biocidal mechanisms in biological control of Fusarium wilt in chickpea (Cicer arietinum L.) by antagonistic rhizobacteria: A current perspective in soil borne fungal pest management. Int J Curr Microbiol App Sci 8:1494–1510. https://doi.org/10.20546/ijcmas. 2019. 810. 175

  • Lal S, Tabacchioni S (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a mini review. Indian J Microbiol 49(1):2–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Ma M, Huang R, Qu Q, Li G, Zhou J, Zhang Q, Lu K, Niu X, Luo J (2012) Induction of chlamydospore formation in Fusarium by cyclic lipopeptide antibiotics from Bacillus subtilis C2. J Chem Ecolo 38(8):966–974. https://doi.org/10.1007/s10886-012-0171-1

    Article  Google Scholar 

  • Liao JH, Chen PY, Yang YL, Kan SC, Hsieh FC, Liu YC (2016) Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via in situ MALDITOF IMS analysis. Molecules 21:1670. https://doi.org/10.3390/molecules21121670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW (2017) Selection and assessment of plant growthpromoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107(8):928–937. https://doi.org/10.1094/PHYTO-02-17-0051-R

    Article  CAS  PubMed  Google Scholar 

  • Lomas-Cano T, de Palmero-LlamasD B-RA, Camacho-FerreF, Tello-MarquinaJC (2014) First Report of Fusarium oxysporum on Sweet Pepper Seedlings in Almería, Spain. Plant Dis 98(10):1435–1435. https://doi.org/10.1094/PDIS-04-14-0365-PDN

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Malik CP, Singh MB (1980) Plant enzymology and hittoenzymology, vol 286. Kalyani Publishers, New Delhi

    Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. App Envmicrobiol 64(2): 795–799. https://doi.org/10.1128/AEM. 64. 2. 795–799. 1998

  • Miao S, Liang J, Xu Y, Yu G, Shao M (2023) Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. J Cell Physiol https://doi.org/10.1002/jcp.30974

    Article  PubMed  Google Scholar 

  • Mishra R, Nanda S, Rout E, Chand SK, Mohanty JN, Joshi RK (2017) Differential expression of defense-related genes in chilli pepper infected with anthracnose pathogen Colletotrichum truncatum. Physiol Mol Plant Pathol 97: 1–10. https://doi.org/10.1016/j.pmpp.2016.11.001

  • Mohamed H, Saieda SA, Mohamed MM (2013) Influences of some biotic and abiotic factors on protein production and as inducers of Fusarium wilt disease resistance in lupine (Lupinus albus L). Afr J Microbiol Rese 7(15):1421–1427. https://doi.org/10.5897/AJMR12

    Article  CAS  Google Scholar 

  • Mokhtarnejad L, Farzaneh M (2023) First report of occurrence fusarium wilt on cyclamen caused by Fusarium oxysporum in Iran. J Plant Pathol 1–1. https://doi.org/10.1007/s42161-023-01315-2

  • Passari AK, Lalsiamthari PC, Zothanpuia LVV, Mishra VK, Yadav MK, Gupta VK, Singh BP (2018) Biocontrol of Fusarium wilt of Capsicum annuum by rhizospheric bacteria isolated from turmeric endowed with plant growth promotion and disease suppression potential. Eur J Plant Pathol 150:831–846. https://doi.org/10.1007/s10658-017-1325-3

    Article  CAS  Google Scholar 

  • Rabbee MF, Hwang BS, Baek KH (2023) Bacillus velezensis: a beneficial Biocontrol Agent or Facultative Phytopathogen for sustainable agriculture. Agronomy 13(3):840. https://doi.org/10.3390/agronomy13030840

    Article  CAS  Google Scholar 

  • Rajeswari P, Kannabiran B (2011) In Vitro Effects of antagonistic microorganisms on Fusarium oxysporum [Schlecht. Emend. Synd & Hans] infecting Arachis hypogaea L. J Phytology 3(3):83–85

    Google Scholar 

  • Rashid MH, Khalequzzaman KM, Alam MS, Uddin SA, Green SK (2007) Screening of different sweet pepper lines against cucumber mosaic virus and chilli veinal mottle virus. Int J Sustainable Crop Product 2(3):1–4

    Google Scholar 

  • Rathod K, Rana S, Dhandhukia P, Thakker JN (2023) Marine Bacillus subtilis as an effective biocontrol agent against Fusarium oxysporum f. sp. ciceris. Eur J Plant Pathol 1–12. https://doi.org/10.1007/s10658-023-02720-0

  • Shaban WI, El-Bramawy MA (2011) Impact of dual inoculation with Rhizobium and Trichoderma on damping off, root rot diseases and plant growth parameters of some legumes field crop under greenhouse conditions. Int Res J Agric Sci Soil Sci 1(3):98–108

    Google Scholar 

  • Sharma KD, Chen W, Muehlbauer FJ (2005) Genetics of chickpea resistance to five races of fusarium wilt and a concise set of race differentials for Fusarium oxysporumf sp. ciceri. Plant Dis 89:385–339. https://doi.org/10.1094/PD-89-0385

    Article  PubMed  Google Scholar 

  • Siddiqui ZA, Sharma B, Siddiqui S (2007) Evaluation of Bacillus and Pseudomonas isolates for the biocontrol of Meloidogyne incognita on tomato. Acta Phytopathol Entomol Hungar 42:25–34. https://doi.org/10.1556/APhyt.42.2007.1.4

  • Sixto JA, Garzón-Tiznado SH, Carlos AL, Jesús ER (2018) Occurrence of Fusarium oxysporum causing wilt on pepper in Mexico, Canadian J Plant Pathol 40(2):238–247. https://doi.org/10.1080/07060661.2017.1420693

  • Smith D, Onions AH (1994) The preservation and maintenance of living fungi CAB international. CAB International, Published by Wallingford, Oxon, UK

    Book  Google Scholar 

  • Spychalski M, Kukawka R, Prasad R, Borodynko-Filas N, Stępniewska-Jarosz S, Turczański K, Smiglak M (2022) A New Benzothiadiazole Derivative with systemic Acquired Resistance Activity in the Protection of Zucchini (Cucurbita pepo convar. Giromontiina) against viral and fungal pathogens. Plants 12(1):43. https://doi.org/10.3390/plants12010043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaramoorthy S, Raguchander T, Ragupathi N, Samiyappan R (2012) Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biol Control 60:59–67. https://doi.org/10.1016/j.biocontrol.2011.10.002

  • Tripathi D, Gaurav R, Kumar D (2019) Chemical elicitors of systemic acquired resistance Salicylic acid and its functional analogs Curr Plant Biol 17:48–59. https://doi.org/10.1016/j.cpb.2019.03.002

  • Urrea R, Cabezas L, Sierra R, Cardenas M, Restrepo S, Jimenez P (2011) Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. J Appl Microbiol 111:707–716. https://doi.org/10.1111/j.1365-2672.2011.05092.x

  • Wang J, Qin S, Fan R, Peng Q, Hu X, Yang L, Liu Z, Baccelli I, Migheli Q, Berg G, Chen X (2023) Plant Growth Promotion and Biocontrol of Leaf Blight caused by Nigrospora sphaerica on passion fruit by endophytic Bacillus subtilis strain GUCC4. J Fungi 9(2):132. https://doi.org/10.3390/jof9020132

    Article  CAS  Google Scholar 

  • Wu CC, Shen YM, Teng YC, Chung WH (2023) First report of lisianthus wilt caused by Fusarium oxysporum f. sp. eustomae in Taiwan. Crop Protection 106298. https://doi.org/10.1016/j.cropro.2023.106298

  • Zhu SY, Hong DL (2008) Comparison between two hybrid cultivars of indica rice (Oryza sativa L.) in seed vigor and biochemical traits after aging. Chin J Eco Agric 16(2):396–400. https://doi.org/10.3724/SP.J.1011.2008.00396

  • Zhu X, Ma K, Yao Y, Song Z, Zhou Y, Si Z, Lu H, Chen W, Li X (2023) Benzothiadiazole induced changes in the transcriptome and regulation of banana fruit ripening and disease resistance. Postharvest BiolTechnol 196:112161. https://doi.org/10.1016/j.postharvbio.2022.112161 1016/j. postharvbio. 2022. 112161

  • Zou L, Wang Q, Wu R, Zhang Y, Wu Q, Li M, Ye K, Dai W, Huang J (2023) Biocontrol and plant growth promotion potential of endophytic Bacillus subtilis JY-7-2L on Aconitum carmichaelii Debx. Front Microbiol 13:1059549. https://doi.org/10.3389/fmicb. 2022. 1059549

Download references

Acknowledgements

This research work was funded by Institutional Fund Project under grant no “IFPIP: 76-155-1443”. The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Funding

This research work was Funded by Institutional Fund Project under grant no “IFPIP: 76-155-1443”by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Data curation, KAMA, NMAS and MAAM; Formal analysis, IRA; Funding acquisition, KAMA and MAAM; Investigation, NMAS; Methodology, IRA; Project administration, MAAM; Resources, KAMA; Software, NMAS; Supervision, KAMA and NMAS; Visualization, KAMA; Writing—original draft, KAMA, and MAAM; Writing—review and editing, KAMA and IRA.

Corresponding author

Correspondence to Kamal A. M. Abo-Elyousr.

Ethics declarations

Supplementary Information

Not applicable.

Institutional Review Board Statement

Not applicable.

Informed consent

Statement: Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Elyousr, K.A.M., Sallam, N.M., Mousa, M.A. et al. Synergistic effect of Bacillus subtilis and benzothiadiazole (Bion®) on the suppression of Fusarium oxysporum and the enhancement of disease resistance in Capsicum annuum. J Plant Pathol 106, 127–138 (2024). https://doi.org/10.1007/s42161-023-01527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-023-01527-6

Keywords

Navigation