Skip to main content

Advertisement

Log in

Manganese-Based Lithium-Ion Battery: Mn3O4 Anode Versus LiNi0.5Mn1.5O4 Cathode

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) are widely used in portable consumer electronics, clean energy storage, and electric vehicle applications. However, challenges exist for LIBs, including high costs, safety issues, limited Li resources, and manufacturing-related pollution. In this paper, a novel manganese-based lithium-ion battery with a LiNi0.5Mn1.5O4‖Mn3O4 structure is reported that is mainly composed of environmental friendly manganese compounds, where Mn3O4 and LiNi0.5Mn1.5O4 (LNMO) are adopted as the anode and cathode materials, respectively. The proposed structure improves battery safety and reduce costs compared with current battery technology, provides comparable energy density with that of traditional graphite-based batteries. First, the characteristics and the electrochemical performances of the Mn3O4 anode and the LNMO cathode are investigated separately against Li metal in half cell configurations, with promising performances being demonstrated by both electrodes. Then, a full cell structure with Mn3O4 against LNMO is constructed that provides an average discharge voltage of 3.5 V and an initial specific capacity of 86.2 mA·h·g−1. More importantly, the electrochemical performance of the LNMO‖Mn3O4 full cell and its possible decay mechanisms are discussed systemically; and efficient strategies are proposed to further improve both the electrochemical performance of Mn3O4 and the stability of LNMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Noori, A., El-Kady, M.F., Rahmanifar, M.S., et al.: Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48(5), 1272–1341 (2019)

    Article  Google Scholar 

  2. Lee, J.I., Shin, M., Hong, D., et al.: Efficient Li-Ion-conductive layer for the realization of highly stable high-voltage and high-capacity lithium metal batteries. Adv. Energy Mater. 9(13), 1803722 (2019)

    Article  Google Scholar 

  3. Palacín, M.R.: Understanding ageing in Li-ion batteries: a chemical issue. Chem. Soc. Rev. 47(13), 4924–4933 (2018)

    Article  Google Scholar 

  4. Nayak, P.K., Yang, L., Brehm, W., et al.: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57(1), 102–120 (2018)

    Article  Google Scholar 

  5. Intan, N.N., Klyukin, K., Alexandrov, V.: Ab initio modeling of transition metal dissolution from the LiNi0.5Mn1.5O4 cathode. ACS Appl. Mater. Interfaces 11(22), 20110–20116 (2019)

    Article  Google Scholar 

  6. Zhang, X., Cheng, F., Yang, J., et al.: LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-Ion batteries. Nano Lett. 13(6), 2822–2825 (2013)

    Article  Google Scholar 

  7. Wang, J., Nie, P., Jiang, J., et al.: High-voltage Li2SiO3 − LiNi0.5Mn1.5O4 hollow spheres prepared through in situ aerosol spray pyrolysis towards high-energy Li-ion batteries. ChemElectroChem 5(8), 1212–1218 (2018)

    Article  Google Scholar 

  8. Yin, C., Zhou, H., Yang, Z., et al.: Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal–organic framework method. ACS Appl. Mater. Interfaces 10(16), 13625–13634 (2018)

    Article  Google Scholar 

  9. Nisar, U., Petla, R. K., Al-Hail, J. A. S. A., et al.: Understanding the origin of the ultrahigh rate performance of a SiO2-modified LiNi0.5Mn1.5O4 cathode for lithium-ion batteries. ACS Appl. Energy Mater. 2(10), 7263–7271 (2019)

    Article  Google Scholar 

  10. Xu, G., Pang, C., Chen, B., et al.: Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries. Adv. Energy Mater. 8(9), 1701398 (2018)

    Article  Google Scholar 

  11. Zhao, R., Li, L., Xu, T., et al.: One-step integrated surface modification to build a stable interface on high-voltage cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces 11(17), 16233–16242 (2019)

    Article  Google Scholar 

  12. He, L., Chen, C., Kotobuki, M., et al.: A new approach for synthesizing bulk-type all-solid-state lithium-ion batteries. J. Mater. Chem. A 7(16), 9748–9760 (2019)

    Article  Google Scholar 

  13. Lee, H.W., Muralidharan, P., Ruffo, R., et al.: Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 10(10), 3852–3856 (2010)

    Article  Google Scholar 

  14. Zhao, C., Wang, X., Liu, R., et al.: β-MnO2 sacrificial template synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 for lithium ion battery cathodes. RSC Adv. 4(14), 7154 (2014)

    Article  Google Scholar 

  15. Jiang, H., Wei, Z., Ma, L., et al.: An aqueous dual-ion battery cathode of Mn3O4 via reversible insertion of nitrate. Angew. Chem. Int. Ed. 58(16), 5286–5291 (2019)

    Article  Google Scholar 

  16. Liu, Y., Han, J., Fan, L., et al.: Pomegranate-like multicore–shell Mn3O4 encapsulated mesoporous N-doped carbon nanospheres with an internal void space for high-performance lithium-ion batteries. Chem. Commun. 55(56), 8064–8067 (2019)

    Article  Google Scholar 

  17. Tang, C., Xiong, F., Yao, X., et al.: Hierarchical Mn3O4/graphene microflowers fabricated via a selective dissolution strategy for alkali-metal-ion storage. ACS Appl. Mater. Interfaces 11(15), 14120–14125 (2019)

    Article  Google Scholar 

  18. Chu, Y., Guo, L., Xi, B., et al.: Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv. Mater. 30(6), 1704244 (2018)

    Article  Google Scholar 

  19. Chen, X., Yuan, L., Hao, Z., et al.: Free-standing Mn3O4@CNF/S paper cathodes with high sulfur loading for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10(16), 13406–13412 (2018)

    Article  Google Scholar 

  20. Jiang, Y., Yue, J.L., Guo, Q., et al.: Highly porous Mn3O4 micro/nanocuboids with in situ coated carbon as advanced anode material for lithium-ion batteries. Small 14(19), 1704296 (2018)

    Article  Google Scholar 

  21. Zhang, D., Li, G., Fan, J., et al.: In situ synthesis of Mn3O4 nanoparticles on hollow carbon nanofiber as high-performance lithium-ion battery anode. Chem-Eup. J 24(38), 9632–9638 (2018)

    Article  Google Scholar 

  22. Xiao, X., Ahn, D., Liu, Z., et al.: Atomic layer coating to mitigate capacity fading associated with manganese dissolution in lithium ion batteries. Electrochem. Commun. 32, 31–34 (2013)

    Article  Google Scholar 

  23. Kim, J.H., Pieczonka, N.P.W., Li, Z., et al.: Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochim. Acta 90, 556–562 (2013)

    Article  Google Scholar 

  24. Pieczonka, N.P.W., Liu, Z., Lu, P., et al.: Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-vVoltage spinel for lithium ion batteries. J. Phys. Chem. C 117(31), 15947–15957 (2013)

    Article  Google Scholar 

  25. Dai, Y., Cai, L., White, R.E.: Capacity fade model for spinel LiMn2O4 electrode. J. Electrochem. Soc. 160(1), A182–A190 (2013)

    Article  Google Scholar 

  26. Wang, Y., Wang, Y., Jia, D., et al.: All-nanowire based Li-ion full cells using homologous Mn2O3 and LiMn2O4. Nano Lett. 14(2), 1080–1084 (2014)

    Article  MathSciNet  Google Scholar 

  27. Zhou, L., Zhao, D., Lou, X.: LiNi0.5Mn1.5O4 Hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem. 124(1), 243–245 (2012)

    Article  Google Scholar 

  28. Xu, M., Zhou, L., Dong, Y., et al.: Development of novel lithium borate additives for designed surface modification of high voltage LiNi0.5Mn1.5O4 cathodes. Energ. Environ. Sci. 9(4), 1308–1319 (2016)

    Article  Google Scholar 

  29. Manthiram, A., Chemelewski, K., Lee, E.S.: A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energ. Environ. Sci. 7, 1339–1350 (2014)

    Article  Google Scholar 

  30. Liu, J., Zhou, L., Yu, W., et al.: Effect of fluoroethylene carbonate as an electrolyte solvent in the LiNi0.5Mn1.5O4/Li4Ti5O12 cell. J. Alloys Compd. 812, 152064 (2020)

    Article  Google Scholar 

  31. Jarry, A., Gottis, S., Yu, Y.S., et al.: The formation mechanism of fluorescent metal complexes at the LixNi0.5Mn1.5O4−δ/carbonate ester electrolyte interface. J. Am. Chem. Soc. 137(10), 3533–3539 (2015)

    Article  Google Scholar 

  32. Poizot, P., Laruelle, S., Grugeon, S., et al.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)

    Article  Google Scholar 

  33. Hu, J., Li, H., Huang, X., et al.: Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ion. 177(26–32), 2791–2799 (2006)

    Article  Google Scholar 

  34. Komaba, S., Kaplan, B., Ohtsuka, T., et al.: Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries. J. Power Sources 119–121, 378–382 (2003)

    Article  Google Scholar 

  35. Zhang, Y., Zhang, H.J., Feng, Y.Y., et al.: Li-ion batteries: ultralong lifespan and ultrafast Li storage: single-crystal LiFePO4 Nanomeshes (Small 4/2016). Small 12(4), 410 (2016)

    Article  Google Scholar 

  36. Christensen, J., Newman, J.: Cyclable lithium and capacity loss in Li-ion cells. J. Electrochem. Soc. 152(4), A818–A829 (2005)

    Article  Google Scholar 

  37. Jarvis, C.R., Lain, M.J., Gao, Y., et al.: A lithium ion cell containing a non-lithiated cathode. J. Power Sources 146(1–2), 331–334 (2005)

    Article  Google Scholar 

  38. Mao, W., Ai, G., Dai, Y., et al.: In-situ synthesis of MnO2@CNT microsphere composites with enhanced electrochemical performances for lithium-ion batteries. J. Power Sources 310, 54–60 (2016)

    Article  Google Scholar 

  39. Li, L., Nan, C., Lu, J., et al.: α-MnO2 nanotubes: high surface area and enhanced lithium battery properties. Chem. Commun. 48(55), 6945–6947 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the National Natural Science Foundation of China (NSFC) (Nos. 51602058, 51702103), the Special Support Plan for High-Level Talents of Guangdong Province (No. 2017TQ04N840), and the Science and Technology Planning Project of Guangdong Province (Nos. 2017A010103011, 2017A030313081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenfeng Mao or Guo Ai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, W., Yue, W., Pei, F. et al. Manganese-Based Lithium-Ion Battery: Mn3O4 Anode Versus LiNi0.5Mn1.5O4 Cathode. Automot. Innov. 3, 123–132 (2020). https://doi.org/10.1007/s42154-020-00100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-020-00100-6

Keywords

Navigation