Skip to main content
Log in

Highly reversible and rapid charge transfer Zn-MnO2 battery by MnO2 nanosheet arrays anchored nanocellulose-based carbon aerogel

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Zn-MnO2 batteries are eco-friendly energy storage devices, but their practical application is hindered by challenges such as low conductivity, sluggish Zn2+ diffusion kinetics, and instability in the crystal structure of manganese dioxide (MnO2) cathode materials during Zn2+ insertion/extraction. In this work, a composite nanocellulose-based carbon aerogel@MnO2 (CA@MnO2) cathode with enhanced Zn2+ insertion/de-insertion kinetics and storage capacity was fabricated by bi-directional freezing, carbonization, and following hydrothermal deposition. The nanocellulose-based carbon aerogels with ordered porous structure and high specific surface area served as the substrate, which facilitated the rapid Zn2+ migration and efficient electrode contact interface. In the two-electrode system, the CA@MnO2 can provide a reversible specific capacity of 480 mAh g−1 at 0.5 A g−1 and a high multiplicative capacity of 160 mAh g−1 at 5 A g−1 with outstanding stability of operation over 3000 cycles. The assembled Zn//CA@MnO2 batteries attained a remarkable specific capacitance of 397 mAh g−1 at a current density of 0.1 A g−1. This study provides a feasible route for the preparation of high-performance Zn-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  2. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.013

    Article  Google Scholar 

  3. Wu B, Zhang G, Yan M, Xiong T, He P, He L, Xu X, Mai L (2018) Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-Ion battery. Small 14:1703850. https://doi.org/10.1002/smll.201703850

    Article  CAS  Google Scholar 

  4. Zeng Y, Zhang X, Meng Y, Yu M, Yi J, Wu Y, Lu X, Tong Y (2017) Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv Mater 29:1700274. https://doi.org/10.1002/adma.201700274

    Article  CAS  Google Scholar 

  5. Zhang X, Wu S, Deng S, Wu W, Zeng Y, Xia X, Pan G, Tong Y, Lu X (2019) 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn–MnO2 batteries. Small Methods 3:1900525. https://doi.org/10.1002/smtd.201900525

    Article  CAS  Google Scholar 

  6. Zhang Y, Deng S, Li Y, Liu B, Pan G, Liu Q, Wang X, Xia X, Tu J (2020) Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn–MnO2 batteries. Energy Storage Mater 29:52–59. https://doi.org/10.1016/j.ensm.2020.04.003

    Article  CAS  Google Scholar 

  7. Juran T, Young J, Smeu M (2018) Density functional theory modeling of MnO2 polymorphs as cathodes for multivalent Ion batteries. J Phys Chem C 122:8788–8795. https://doi.org/10.1021/ACS.JPCC.8B00918

    Article  CAS  Google Scholar 

  8. Xu T, Wang Y, Liu K, Zhao Q, Liang Q, Zhang M, Si C (2023) Ultralight MXene/carbon nanotube composite aerogel for high performance flexible supercapacitor. Adv Compos Hybrid Mater 6(3):108. https://doi.org/10.1007/s42114-023-00675-8

    Article  CAS  Google Scholar 

  9. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Si C, Zhang K (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Func Mater 32(26):2113082. https://doi.org/10.1002/adfm.202113082

    Article  CAS  Google Scholar 

  10. Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, Dai L, Zhang M, Wang Y, Si C, Du H, Zhang K (2023) Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 15(1):98. https://doi.org/10.1007/s40820-023-01073-x

    Article  CAS  Google Scholar 

  11. Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817

    Article  CAS  Google Scholar 

  12. Zhao Q, Huang X, Zhou M, Ju Z, Sun X, Sun Y, Huang Z, Li H, Ma T (2020) Proton insertion promoted a Polyfurfural/MnO2 nanocomposite cathode for a rechargeable aqueous Zn-MnO2 battery. Acs Appl Mater 12:36072–36081. https://doi.org/10.1021/acsami.0c08579

    Article  CAS  Google Scholar 

  13. Gao X, Wu H, Li W, Tian Y, Zhang Y, Wu H, Yang L, Zou G, Hou H, Ji X (2020) H+-insertion boosted α-MnO2 for an aqueous Zn-Ion battery. Small 16:1905842. https://doi.org/10.1002/smll.201905842

    Article  CAS  Google Scholar 

  14. Alfaruqi M, Gim J, Kim S, Song J, Jo J, Kim S, Mathew V, Kim J (2015) Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J Power Sources 288:320–327. https://doi.org/10.1016/j.jpowsour.2015.04.140

    Article  CAS  Google Scholar 

  15. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417. https://doi.org/10.1021/jp7108785

    Article  CAS  Google Scholar 

  16. Alfaruqi M, Islam S, Mathew V, Song J, Kim S, Tung D, Jo J, Kim S, Baboo J, Xiu Z, Kim J (2017) Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Appl Surf Sci 404:435–442. https://doi.org/10.1016/j.apsusc.2017.02.009

    Article  CAS  Google Scholar 

  17. Alfaruqi M, Gim J, Kim S, Song J, Jo J, Kim S, Mathew V, Kim J (2015) Enhanced reversible divalent zinc storage in a structurally stable α- MnO2 nanorod electrode. J Power Sources 88:320–327. https://doi.org/10.1016/j.jpowsour.2015.04.140

    Article  CAS  Google Scholar 

  18. Alfaruqi M, Islam S, Putro D, Mathew V, Kim S, Jo J, Kim S, Sun Y, Kim K, Kim J (2018) Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim Acta 276:1–11. https://doi.org/10.1016/j.electacta.2018.04.139

    Article  CAS  Google Scholar 

  19. Liu M, Zhao Q, Liu H, Yang J, Chen X, Yang L, Cui Y, Huang W, Zhao W, Song A, Wang Y, Ding S, Song Y, Qian G, Chen H, Pan F (2019) Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous zn ion battery. Nano Energy 64:103942. https://doi.org/10.1016/j.nanoen.2019.103942

    Article  CAS  Google Scholar 

  20. Jiang M, Fu C, Yang J, Liu Q, Zhang J, Sun B (2019) Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al-air batteries. Energy Storage Mater 18:34–42. https://doi.org/10.1016/j.ensm.2018.09.026

    Article  Google Scholar 

  21. Juran T, Young J, Smeu M (2018) Density functional theory modeling of MnO2 polymorphs as cathodes for multivalent Ion batteries. J Phys Chem C 122:8788–8795. https://doi.org/10.1021/ACS.JPCC.8B00918

    Article  CAS  Google Scholar 

  22. Sun W, Wang F, Hou S, Yang C, Fan X, Ma Z, Gao T, Han F, Hu R, Zhu M, Wang C (2017) Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc 139:9775–9778. https://doi.org/10.1021/jacs.7b04471

    Article  CAS  PubMed  Google Scholar 

  23. Wang C, Wang M, He Z, Liu L, Huang Y (2020) Rechargeable aqueous zinc–manganese dioxide/graphene batteries with high rate capability and large capacity. ACS Appl Energy Mater 3:1742–1748. https://doi.org/10.1021/acsaem.9b02220

    Article  CAS  Google Scholar 

  24. Mao J, Wu F-F, Shi W-H, Liu W-X, Xu X-L, Cai G-F, Li Y-W, Cao X-H (2019) Preparation of polyaniline-coated composite aerogel of MnO2 and reduced graphene oxide for high-performance zinc-ion battery. Chin J Polym Sci 38:514–521. https://doi.org/10.1007/s10118-020-2353-6

    Article  CAS  Google Scholar 

  25. Liang Q, Liu K, Xu T, Wang Y, Zhang M, Zhao Q, Zhong W, Cai X, Zhao Z, Si C (2023) Interfacial modulation of Ti3C2Tx MXene by cellulose nanofibrils to construct hybrid fibers with high volumetric specific capacitance. Small 20:2307344. https://doi.org/10.1002/smll.202307344

    Article  PubMed  Google Scholar 

  26. Liu K, Du H, Liu W, Zhang M, Wang Y, Liu H, Zhang X, Xu T, Si C (2022) Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14(40):14902–14912. https://doi.org/10.1039/D2NR00468B

    Article  CAS  PubMed  Google Scholar 

  27. Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S, Ni S, Xu T, Du H, Si C (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5(2):1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  CAS  Google Scholar 

  28. Liu W, Lin Q, Chen S, Yang H, Liu K, Pang B, Xu T, Si C (2023) Microencapsulated phase change material through cellulose nanofibrils stabilized pickering emulsion templating. Adv Compos Hybrid Mater 6(4):149. https://doi.org/10.1007/s42114-023-00725-1

    Article  CAS  Google Scholar 

  29. Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Lignin-based electrodes for energy storage application. Ind Crops Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425

    Article  CAS  Google Scholar 

  30. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022) Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett 14(1):104. https://doi.org/10.1007/s40820-022-00849-x

    Article  CAS  Google Scholar 

  31. Duan Y, Yang H, Liu K, Xu T, Chen J, Xie H, Du H, Dai L, Si C (2023) Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv Compos Hybrid Mater 6(3):123. https://doi.org/10.1007/s42114-023-00700-w

    Article  CAS  Google Scholar 

  32. Liu W, Pang B, Zhang M, Lv J, Xu T, Bai L, Cai X-M, Yao S, Huan S, Si C (2024) Pickering multiphase materials using plantbased cellulosic micro/nanoparticles. Aggregate 5:e486. https://doi.org/10.1002/agt2.486

    Article  CAS  Google Scholar 

  33. Wang Y, Xu T, Liu K, Zhang M, Cai X-M, Si C (2023) Biomass based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate 5:e428. https://doi.org/10.1002/agt2.428

    Article  CAS  Google Scholar 

  34. Liu C, Neale Z, Zheng J, Jia X, Huang J, Yan M, Tian M, Wang M, Yang J, Cao G (2019) Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ Sci 12:2273–2285. https://doi.org/10.1039/C9EE00956F

    Article  CAS  Google Scholar 

  35. Wei Z, Cheng J, Wang R, Li Y, Ren Y (2021) From spent Zn-MnO2 primary batteries to rechargeable Zn-MnO2 batteries: a novel directly recycling route with high battery performance. J Environ Manage 298:113473. https://doi.org/10.1016/j.jenvman.2021.113473

    Article  CAS  PubMed  Google Scholar 

  36. Wei Y, Li S, Wu Q, Han Y, Liu J, Qian G, Yang C (2023) Coral-like carbon skeleton for aqueous zinc-ion batteries MnO2 cathode material. Ionics 29:4733. https://doi.org/10.1007/s11581-023-05149-x

    Article  CAS  Google Scholar 

  37. Zhou X, Chen S, Zhang Y, Yu B, Chen Y, Liu Y, Li S, Liu L, Jin H, Deng J, Tan Q (2024) Three-dimensional conductive Interface and tip structure of MnO2 electrode facilitate superior zinc ion batteries. Small Struct 2400057. https://doi.org/10.1002/sstr.202400057

  38. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130. https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  39. Xu C, Li B, Du H, Kang F (2012) Energetic zinc ion chemistry the rechargeable zinc ion battery. Angew Chem Int Edit 51:933–935. https://doi.org/10.1002/anie.201106307

    Article  CAS  Google Scholar 

  40. Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271. https://doi.org/10.1021/am507999s

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, Dai H, Hu L (2015) Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13:346–354. https://doi.org/10.1016/j.nanoen.2015.02.015

    Article  CAS  Google Scholar 

  42. Chen H, Lu X, Zhang L, Sui D, Wang C, Meng F, Qi W (2021) Enhanced electrochemical performance of MnO2 nanoparticles: graphene aerogels as conductive substrates and capacitance contributors. Dalton T 50:8776–8784. https://doi.org/10.1039/d1dt00404b

    Article  CAS  Google Scholar 

  43. Zhao Q, Xu T, Zhang M, Liu H, Du H, Si C (2023) Zn@cellulose nanofibrils composite three-dimensional carbon framework for long-life zn anode. Ind Crops Prod 194:116343. https://doi.org/10.1016/j.indcrop.2023.116343

    Article  CAS  Google Scholar 

  44. Zheng Q, Xie R, Fang L, Cai Z, Ma Z, Gong S (2018) Oxygen- deficient and nitrogen- doped MnO2 nanowire- reduced graphene oxide- cellulose nanofibril aerogel electrodes for high- performance asymmetric supercapacitors. J Mater Chem A 6:24407–24417. https://doi.org/10.1039/C8TA09374A

    Article  CAS  Google Scholar 

  45. Liu J, Ge X, Ye X, Wang G, Zhang H, Zhou H, Zhang Y, Zhao H (2016) 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. J Mater Chem A 4:1970–1979. https://doi.org/10.1039/C5TA08106H

    Article  CAS  Google Scholar 

  46. Chen N, Wang W, Ma Y, Chuai M, Zheng X, Wang M, Xu Y, Yuan Y, Sun J, Li K, Meng Y, Shen C, Chen W (2023) Aqueous zinc-chlorine battery modulated by a MnO2 Redox Adsorbent. Small Methods 2201553. https://doi.org/10.1002/smtd.202201553

  47. Hong S, Jin S, Deng Y, Garcia-Mendez R, Kim K-i, Utomo N, Archer L (2023) Efficient scalable hydrothermal synthesis of MnO2 with controlled polymorphs and morphologies for enhanced battery cathodes. ACS Energy Lett 8:1744. https://doi.org/10.1021/acsenergylett.3c00018

    Article  CAS  Google Scholar 

  48. Lam D, Dung D, Kim J-H, Lee S-M (2023) Metal-organic framework-derived NiO@C as a host for MnO2 cathode of stable zinc-ion batteries. ACS Appl Energy Mater 6:5368. https://doi.org/10.1016/j.est.2021.102426

    Article  CAS  Google Scholar 

  49. Tang H, Liu C, Zhou R, Cai T, Guo C, Liu X, Zhu Y (2023) Synergistic effect of small-size MnO2 nanodots and conductive reduced graphene oxide boosting cathode materials for high-performance aqueous zinc-based energy storage. J Power Sources 566:232915. https://doi.org/10.1016/j.jpowsour.2023.232915

  50. Beyreuther E, Grafstrom S, Eng L, Thiele C, Dorr K (2006) XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys Rev B 73:155425. https://doi.org/10.1103/PHYSREVB.73.155425

    Article  Google Scholar 

  51. Zhong X, Yang C, Zhao Y, Qiu J, Zang L (2022) Rational design of layered MnO2@graphene with hierarchical structure for flexible quasisolid-state aqueous zinc-ion battery via laser activation. Adv Mater 8:2201430. https://doi.org/10.1002/admt.202201430

    Article  CAS  Google Scholar 

  52. Peng J, Chen Y, Hu Y, Li N, Wang J-G (2023) Cu2+ intercalation boosts zinc energy reactivity of MnO2 with enhanced capacity and longevity. Appl Surf Sci 623:157060. https://doi.org/10.1016/j.apsusc.2023.157060

    Article  CAS  Google Scholar 

  53. Zhang L, Liao Y, Ye M, Cai W, Xiao M, Hu C, Zhong B, Wan F, Guo X (2023) Regeneration of spent lithium manganate batteries into Al-doped MnO2 cathodes toward aqueous Zn batteries. ACS Appl Mater Interfaces 15:59475–59481. https://doi.org/10.1021/acsami.3c14103

    Article  CAS  PubMed  Google Scholar 

  54. Zheng J, Shi P, Chen C, Chen X, Gan Y, Li J, Yao J, Yang Y, Lv L, Ma G (2023) Reinforced bonding of Mo-doped MnO2 with ammonium-ion as cathodes for durable aqueous MnO2–Zn batteries. Sci China Mater 66:3113–3122. https://doi.org/10.1007/s40843-023-2448-0

    Article  CAS  Google Scholar 

  55. Zhao Y, Zhang S, Zhang Y, Liang J, Ren L (2023) Vacancy-rich Al-doped MnO2 cathodes break the trade-off between kinetics and stability for high-performance aqueous Zn-ion batteries. Energy Environ Sci 17:1279–1290. https://doi.org/10.1039/d3ee01659e

    Article  CAS  Google Scholar 

  56. Oku M, Hirokawa K, Ikeda S (1975) X-ray photoelectron spectroscopy of manganese—oxygen systems. J Electron Spectrosc 7:465–473. https://doi.org/10.1016/0368-2048(75)85010-9

    Article  CAS  Google Scholar 

  57. Di C, Polzonetti G (1989) XPS study of MnO oxidation. J Electron Spectrosc 48:117. https://doi.org/10.1016/0368-2048(89)80009-X

    Article  Google Scholar 

  58. Sumboja A, Foo C, Wang X, Le,e P (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25:2809–2815. https://doi.org/10.1002/adma.201205064

    Article  CAS  PubMed  Google Scholar 

  59. Huang Q, Liu L, Wang D, Liu J, Huang Z, Zheng Z (2016) One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. J Mater Chem A 4:6802–6808. https://doi.org/10.1039/C5TA09309K

    Article  CAS  Google Scholar 

  60. Zhang G, Zhu J, Lin L, Liu Y, Li S, Li Q, Liu X, Sun X (2024) A polydopamine coating enabling the stable cycling of MnO2 cathode materials in aqueous zinc batteries. Chem Sci 15:3545. https://doi.org/10.1039/d3sc06096a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang J, Wang J-G, Liu H, Wei C, Kang F (2019) Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J Mater Chem A 7:13727–13735. https://doi.org/10.1039/C9TA03541A

    Article  CAS  Google Scholar 

  62. Sun W, Li B, Lu K, Alabidun S, Cheng Y (2021) Modulating MnO2 interface with flexible and self-adhering alkylphosphonic layers for high performance Zn-MnO2 batteries. ACS Appl Mater Interfaces 13:23724–23731. https://doi.org/10.1021/acsami.1c04097

    Article  CAS  Google Scholar 

  63. Qiu W, Li Y, You A, Zhang Z, Li G, Lu X, Tong Y (2017) High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen doped carbon cloth. J Mater Chem 5:14838–14846. https://doi.org/10.1039/C7TA03274A

    Article  CAS  Google Scholar 

  64. Chen J, Liang J, Zhou Y, Sha Z, Wang C (2021) A vertical graphene enhanced Zn–MnO2 flexible battery towards wearable electronic devices. J Mater Chem A 9:575–584. https://doi.org/10.1039/d0ta08775k

    Article  CAS  Google Scholar 

  65. Wang C, Zeng Y, Xiao X, Wu S, Zhong G, Xu K, Wei Z, Su W, Lu X (2020) γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J Energy Chem 43:182–187. https://doi.org/10.1016/j.jechem.2019.08.011

    Article  Google Scholar 

  66. Liu K, Du H, Liu W, Zhang M, Wang Y, Liu H, Zhang X, Xu T, Si C (2022) Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14:14902–14912. https://doi.org/10.1039/D2NR00468B

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C (2023) Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 313:120815. https://doi.org/10.1016/j.carbpol.2023.120851

    Article  CAS  Google Scholar 

  68. Wang Y, Xu T, Liu K, Zhang M, Zhao Q, Liang Q, Si C (2023) Nanocellulose-based advanced materials for flexible supercapacitor electrodes. Ind Crops Prod 204:117378. https://doi.org/10.1016/j.indcrop.2023.117378

    Article  CAS  Google Scholar 

  69. Zhang M, Wang Y, Liu K, Liu Y, Xu T, Du H, Si C (2023) Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohydr Polym 305:120567. https://doi.org/10.1016/j.carbpol.2023.120567

    Article  CAS  PubMed  Google Scholar 

  70. Zhang M, Duan Y, Chen T, Qi J, Xu T, Du H, Si C (2023) Lignocellulosic materials for energy storage devices. Ind Crops Prod 203:117174. https://doi.org/10.1016/j.indcrop.2023.117174

    Article  CAS  Google Scholar 

  71. Zheng Y, Liu H, Yan L, Yang H, Dai L, Si C (2023) Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Adv Funct Mater 34:2310653. https://doi.org/10.1002/adfm.202310653

    Article  CAS  Google Scholar 

  72. Liu K, Du H, Liu W, Liu H, Zhang M, Xu T, Si C (2022) Cellulose nanomaterials for oil exploration applications. Polym Rev 62:585–625. https://doi.org/10.1080/15583724.2021.2007121

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32071720, 32371809, 32301530), State Key Laboratory of Pulp and Paper Engineering (202204), Young Elite Scientist Sponsorship Program by Cast (No.YESS20230242), the China Postdoctoral Science Foundation (2023M740563), Tianjin Excellent Special Commissioner for Agricultural Science and Technology Project (23ZYCGSN00580), Natural Science Foundation of Tianjin (23JCZDJC00630), and Key R & D Program of Shaanxi Province (No. 2023GXLH-045, 2022SF-168).

Author information

Authors and Affiliations

Authors

Contributions

Qingshuang Zhao and Ting Xu designed the experiments. Qingshuang Zhao, Lizhong Zhu, Meng Zhang, Yaxuan Wang, Han Zhang, and Xuan Wang conducted experiments and drafted the manuscript. Ting Xu, Shuhua Tong, Xing Zhou, Jie Li, Weiwei Huan, Zhanhua Huang, and Chuanling Si supervised the manuscript. All authors discussed the experiments and results and have given approval for the final version of the manuscript.

Corresponding authors

Correspondence to Ting Xu, Xing Zhou, Jie Li or Chuanling Si.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 1,800 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zhang, H., Wang, X. et al. Highly reversible and rapid charge transfer Zn-MnO2 battery by MnO2 nanosheet arrays anchored nanocellulose-based carbon aerogel. Adv Compos Hybrid Mater 7, 90 (2024). https://doi.org/10.1007/s42114-024-00900-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00900-y

Keywords

Navigation