Skip to main content
Log in

Dynamic modulation of permittivity properties via compression of carbon nanotube-impregnated cotton for wide epsilon-near-zero bandwidth

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Here, carbon nanotube (CNT)-impregnated cotton was produced by impregnation and drying treatment. Negative permittivity was observed from the CNT loading above 14 wt% for air-dried CNT-impregnated cotton (AD-CNTs@cotton) and 2 wt% for freeze-dried CNT-impregnated cotton (FD-CNTs@cotton), respectively. The CNT loading of FD-CNTs@cotton with negative permittivity decreased significantly resulting from the “semi-coated” state of CNTs on cotton. Through regulating the compression, negative permittivity especially epsilon-near-zero (ENZ) was easily achieved. When the thickness was compressed to 0.1 mm, the ENZ bandwidth was up to around 950 kHz at 14%AD-CNTs@cotton. Drude and parallel model were used to explain the negative permittivity. Besides, through thin spline interpolation, this work firstly utilized fitting to predict the thickness achieving ENZ property (ENZ thickness). The curved surface graphs were fitted, and the intersection line graph showed that the ENZ thickness increased with the CNT loading. It was expected that the widest ENZ bandwidth was from 10 kHz to 1 MHz on 14%AD-CNTs@cotton at thickness of 0.24 mm. However, the ENZ bandwidth (from 322 to 376 kHz) of FD-CNTs@cotton was obviously narrow. This work provides a dynamic modulation and numerical prediction strategy to realize the wide ENZ bandwidth via compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data can be made available on request to the corresponding authors.

References

  1. Kuang B, Song W, Ning M, Li J, Zhao Z, Guo D, Cao M, Jin H (2018) Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127:209–217

    Article  CAS  Google Scholar 

  2. Fan G, Wang Z, Ren H, Liu Y, Fan R (2021) Dielectric dispersion of copper/rutile cermets: dielectric resonance, relaxation, and plasma oscillation. Scripta Mater 190:1–6

    Article  CAS  Google Scholar 

  3. Fan G, Wang Z, Sun K, Liu Y, Fan R (2021) Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. J Mater Sci Technol 61:125–131

    Article  CAS  Google Scholar 

  4. Xie P, Zhang Z, Liu K, Qian L, Dang F, Liu Y, Fan R, Wang X, Dou S (2017) C/SiO2 meta-composite: overcoming the λ/α relationship limitation in metamaterials. Carbon 125:1–8

    Article  CAS  Google Scholar 

  5. Li H, Ai D, Ren L, Yao B, Han Z, Shen Z, Wang J, Chen L-Q, Wang Q (2019) Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv Mater 31:1900875

    Article  Google Scholar 

  6. Zhang T, Yang L, Zhang C, Feng Y, Wang J, Shen Z, Chen Q, Lei Q, Chi Q (2022) Polymer dielectric films exhibiting superior high-temperature capacitive performance by utilizing an inorganic insulation interlayer. Mater Horiz 9:1273–1282

    Article  CAS  PubMed  Google Scholar 

  7. Feng Q, Zhong S, Pei J, Zhao Y, Zhang D, Liu D, Zhang Y, Dang Z (2022) Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem Rev 122:3820–3878

    Article  CAS  PubMed  Google Scholar 

  8. Shi J, Zhao Y, He J, Li T, Zhu F, Tian W, Liu X (2022) Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS Applied Energy Materials 5:3436–3446

    Article  CAS  Google Scholar 

  9. Kakade AB, Deshp SK, Kulkarni SB (2022) Electrical conductivity and modulus studies of x [CNFO]-(1–x) [0.5BCT-0.5BZT] multiferroic with dielectric, magnetic and magneto-dielectric properties. Engineered Science 18:168–176

    CAS  Google Scholar 

  10. Dwivedi A, Singh KN, Hait M, Bajpai PK (2022) Ferroelectric relaxor behavior and dielectric relaxation in strontium barium niobate - a lead-free relaxor ceramic material. Engineered Science 20:117–124

    CAS  Google Scholar 

  11. Sun Z, Qi H, Chen M, Guo S, Huang Z, Maganti S, Murugadoss V, Huang M, Guo Z (2022) Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Engineered Science 18:59–74

    CAS  Google Scholar 

  12. Yang H, Shen Z, Peng H, Xiong Z, Liu C, Xie Y (2021) 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem Eng J 417:128087

    Article  CAS  Google Scholar 

  13. Li X, Hu R, Xiong Z, Wang D, Zhang Z, Liu C, Zeng X, Chen D, Che R, Nie X (2024) Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and Thermal insulation performances. Nano-Micro Letters 16:42

    Article  Google Scholar 

  14. Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76:4773–4776

    Article  CAS  PubMed  Google Scholar 

  15. Staude I, Schilling J (2017) Metamaterial-inspired silicon nanophotonics. Nat Photonics 11:274–284

    Article  CAS  Google Scholar 

  16. Yu P, Besteiro LV, Huang Y, Wu J, Fu L, Tan HH, Jagadish C, Wiederrecht GP, Govorov AO, Wang Z (2019) Broadband metamaterial absorbers. Adv Opt Mater 7:1800995

    Article  Google Scholar 

  17. Hunt J, Driscoll T, Mrozack A, Lipworth G, Reynolds M, Brady D, Smith DR (2013) Metamaterial apertures for computational imaging. Science 339:310–313

    Article  CAS  PubMed  Google Scholar 

  18. Billings L (2013) METAMATERIAL WORLD. Nature 500:138–140

    Article  CAS  PubMed  Google Scholar 

  19. Bang S, Kim J, Yoon G, Tanaka T, Rho J (2018) Recent advances in tunable and reconfigurable metamaterials. Micromachines 9:560

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qu Y, Wang Z, Xie P, Wang Z, Fan R (2022) Ultraweakly and fine-tunable negative permittivity of polyaniline/nickel metacomposites with high-frequency diamagnetic response. Compos Sci Technol 217:109092

    Article  CAS  Google Scholar 

  21. Hou Q, Wang C, Chen Y, Wang S, Fan R, Zhang Z, Yan K (2014) The preparation and dielectrical properties of Fe-Si-B/resin composite. J Funct Mater 45:23157–23160

    CAS  Google Scholar 

  22. Wang Z, Sun K, Wu H, Xie P, Wang Z, Li X, Fan R (2020) Compressible sliver nanowires/polyurethane sponge metacomposites with weakly negative permittivity controlled by elastic deformation. J Mater Sci 55:15481–15492

    Article  Google Scholar 

  23. Wu H, Sun H, Han F, Xie P, Zhong Y, Quan B, Zhao Y, Liu C, Fan R, Guo Z (2022) Negative permittivity behavior in flexible carbon nanofibers- polydimethylsiloxane films. Engineered Science 17:113–120

    CAS  Google Scholar 

  24. Huang K, Wu Y, Liu J, Chang G, Pan X, Weng X, Wang Y, Lei M (2022) A double-layer carbon nanotubes/polyvinyl alcohol hydrogel with high stretchability and compressibility for human motion detection. Engineered Science 17:319–327

    CAS  Google Scholar 

  25. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa TAA, Huang M, Meng S, Liang G, Hou H, Fan R, Guo Z (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695

    Article  Google Scholar 

  26. Luo H, Qiu J (2019) Carbon nanotubes/epoxy resin metacomposites with adjustable radio-frequency negative permittivity and low dielectric loss. Ceram Int 45:843–848

    Article  CAS  Google Scholar 

  27. Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J, Zhang X, Guo J, Shankar A, Li J, Fan R, Cao D, Guo Z (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57

    Article  CAS  Google Scholar 

  28. He X, Peng H, Xiong Z, Nie X, Wang D, Wang G, Liu C (2022) A sustainable and low-cost route to prepare magnetic particle-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes. Carbon 198:195–206

    Article  CAS  Google Scholar 

  29. Xie P, Wang Z, Zhang Z, Fan R, Cheng C, Liu H, Liu Y, Li T, Yan C, Wang N, Guo Z (2018) Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. Journal of Materials Chemistry C 6:5239–5249

    Article  CAS  Google Scholar 

  30. Liu M, Wu H, Wu Y, Xie P, Pashameah RA, Abo-Dief HM, El-Bahy SM, Wei Y, Li G, Li W, Liang G, Liu C, Sun K, Fan R (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5:2021–2030

    Article  CAS  Google Scholar 

  31. Ma R, Cheng C, Qu Y, Fan R (2021) Tailorable negative permittivity of graphene-carbon nanotube/copper calcium titanate metacomposites. Ceram Int 47:9971–9978

    Article  CAS  Google Scholar 

  32. Tang S (2022) Carbon nanotubes for active refrigeration and cooling in micro and mesoscale systems. Engineered Science 18:263–270

    CAS  Google Scholar 

  33. Zhang H, Ding X, Wang S, Huang Y, Zeng X, Maganti S, Jiang Q, Huang M, Guo Z, Cao D (2022) Heavy metal removal from wastewater by a polypyrrole-derived N-doped carbon nanotube decorated with fish scale-like molybdenum disulfide nanosheets. Engineered Science 18:320–328

    CAS  Google Scholar 

  34. Wu H, Yin R, Zhang Y, Wang Z, Xie P, Qian L (2017) Synergistic effects of carbon nanotubes on negative dielectric properties of graphene-phenolic resin composites. J Phys Chem C 121:12037–12045

    Article  CAS  Google Scholar 

  35. Perez-Medina JC, Waldo-Mendoza MA, Cruz-Delgado VJ, Quinones-Jurado ZV, Gonzalez-Morones P, Ziolo RF, Martinez-Colunga JG, Soriano-Corral F, Avila-Orta CA (2016) Metamaterial behavior of polymer nanocomposites based on polypropylene/multi-walled carbon nanotubes fabricated by means of ultrasound-assisted extrusion. Materials 9:923

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ju L, Wang Z, Sun K, Peng H, Fan R, Qin F (2022) Weak epsilon-negative silver nanowires/polyimide metacomposites with extremely low losses. Composites Part a-Applied Science and Manufacturing 153:106755

    Article  CAS  Google Scholar 

  37. Dai J, Luo H, Moloney M, Qiu J (2020) Adjustable graphene/polyolefin elastomer epsilon-near-zero metamaterials at radiofrequency range. ACS Appl Mater Interfaces 12:22019–22028

    Article  CAS  PubMed  Google Scholar 

  38. Feng S, Halterman K (2012) Coherent perfect absorption in epsilon-near-zero metamaterials. Phys Rev B 86:165103

    Article  Google Scholar 

  39. Maas R, Parsons J, Engheta N, Polman A (2013) Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photonics 7:907–912

    Article  CAS  Google Scholar 

  40. Yang J, Huang M, Peng J, Xiao Z (2011) Design of multi-beam antennas based on epsilon-near-zero metamaterials. Aeu-International Journal of Electronics and Communications 65:543–547

    Google Scholar 

  41. Forati E, Hanson GW, Sievenpiper DF (2015) An epsilon-near-zero total-internal-reflection metamaterial antenna. IEEE Trans Antennas Propag 63:1909–1916

    Article  Google Scholar 

  42. Tian JH, Fan RH, Wang ZX, Qu YP, Wang ZY (2021) Communication-modulation mechanism of epsilon-negative and epsilon-near-zero behavior in carbon nanotube-carbon black/copper calcium titanate ternary metacomposites. ECS Journal of Solid State Science and Technology 10:4

    Article  Google Scholar 

  43. Zhang Z, Liu M, Ibrahim MM, Wu H, Wu Y, Li Y, Mersal GAM, El Azab IH, El-Bahy SM, Huang M, Jiang Y, Liang G, Xie P, Liu C (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066

    Article  CAS  Google Scholar 

  44. Ben Shalom M, Zhu MJ, Fal’ko VI, Mishchenko A, Kretinin AV, Novoselov KS, Woods CR, Watanabe K, Taniguchi T, Geim AK, Prance JR, (2016) Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat Phys 12:318-U151

    Article  CAS  Google Scholar 

  45. Xu X, Yao F, Abu Ali OA, Xie W, Mahmoud SF, Xie P, El-Bahy SM, Huang M, Liu C, Fan R, Guo Z, Du A, Estevez D, Qin F, Peng H, Young DP, Gu H (2022) Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Adv Compos Hybrid Mater 5:2002–2011

    Article  CAS  Google Scholar 

  46. Yin R, Zhao W, Qian L (2020) Nitrogen doping effect of graphene nanosheets towards metacomposites with tunable negative permittivity. Composites Communications 19:16–19

    Article  Google Scholar 

  47. Guo J, Chen Z, El-Bahy ZM, Liu H, Abo-Dief HM, Abdul W, Abualnaja KM, Alanazi AK, Zhang P, Huang M, Hu G, Zhu J (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 5:899–906

    Article  CAS  Google Scholar 

  48. Zhu J, Wei S, Ryu J, Guo Z (2011) Strain-sensing elastomer/carbon nanofiber “metacomposites.” J Phys Chem C 115:13215–13222

    Article  CAS  Google Scholar 

  49. Shi Y, Pan K, Moloney MG, Qiu J (2021) Strain sensing metacomposites of polyaniline/silver nanoparticles/carbon foam. Composites Part A-Applied Science and Manufacturing 144:106351

    Article  CAS  Google Scholar 

  50. Guo Y, Liu H, Wang DD, El-Bahy ZM, Althakafy JT, Abo-Dief HM, Guo ZH, Xu BB, Liu CT, Shen CY (2022) Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res 15:6841–6850

    Article  CAS  Google Scholar 

  51. Zou T, Zhang DQ, Shen KY, Huang ZD, Xu T, Peng XH, Zhang H, Du YL, Sun LY (2023) Flame-retardant and fire-warning cotton composite fabrics based on the thermoelectric effect of polypyyrole doped with P-toluenesulfonic acid. Adv Compos Hybrid Mater 6:200

    Article  CAS  Google Scholar 

  52. Ma ZY, Zhang ZH, Zhao F, Wang YH (2022) A multifunctional coating for cotton fabrics integrating superior performance of flame-retardant and self-cleaning. Adv Compos Hybrid Mater 5:2817–2833

    Article  CAS  Google Scholar 

  53. Xie ZY, Tian ZJ, Liu S, Ma H, Ji XX, Si CAL (2022) Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark. Adv Compos Hybrid Mater 5:1294–1306

    Article  CAS  Google Scholar 

  54. Gao Y-N, Wang Y, Yue T-N, Weng Y-X, Wang M (2021) Multifunctional cotton non-woven fabrics coated with silver nanoparticles and polymers for antibacterial, superhydrophobic and high performance microwave shielding. J Colloid Interface Sci 582:112–123

    Article  CAS  PubMed  Google Scholar 

  55. Mao Y, Wang D, Fu S (2022) Layer-by-layer self-assembled nanocoatings of Mxene and P, N-co-doped cellulose nanocrystals onto cotton fabrics for significantly reducing fire hazards and shielding electromagnetic interference. Composites Part A-Applied Science and Manufacturing 153:106751

    Article  CAS  Google Scholar 

  56. Fan J, Yuan M, Wang L, Xia Q, Zheng H, Zhou A (2023) MXene supported by cotton fabric as electrode layer of triboelectric nanogenerators for flexible sensors. Nano Energy 105:107973

    Article  CAS  Google Scholar 

  57. Zheng Y, Yin R, Zhao Y, Liu H, Zhang D, Shi X, Zhang B, Liu C, Shen C (2021) Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J 420:127720

    Article  CAS  Google Scholar 

  58. He XQ, Kitipornchai S, Liew KM (2005) Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J Mech Phys Solids 53:303–326

    Article  CAS  Google Scholar 

  59. Tian S, Li A, Cui J, Sun Z, Liu H, Yan Z, Ding H, Tian H, Qian L (2023) Order effect of nitrogen and phosphorus co-doping carbon nanofibers for enhancing electromagnetic wave absorption. Carbon 203:580–589

    Article  CAS  Google Scholar 

  60. Li F, Bi Z, Kimura H, Li H, Liu L, Xie X, Zhang X, Wang J, Sun X, Ma Z, Du W, Hou C (2023) Energy- and cost-efficient salt-assisted synthesis of nitrogen-doped porous carbon matrix decorated with nickel nanoparticles for superior electromagnetic wave absorption. Adv Compos Hybrid Mater 6:133

    Article  CAS  Google Scholar 

  61. Li F, Wu N, Kimura H, Wang Y, Xu BB, Wang D, Li Y, Algadi H, Guo Z, Du W, Hou C (2023) Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Letters 15:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Bin XuB, Algadi H, Pashameah RA, Alanazih AK, Alzahrani E, Li H, Du W, Guo Z, Hou C (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259

    Article  CAS  Google Scholar 

  63. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu BB, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195

    Article  CAS  Google Scholar 

  64. Davidovich MV (2019) Hyperbolic metamaterials: production, properties, applications, and prospects. Phys Usp 62:1173–1207

    Article  CAS  Google Scholar 

  65. Su Y, Chen D, Zeng J, Sui G, Lan J, Yang X (2020) The acquirement of desirable dielectric properties of carbon nanofiber composites based on the controlled crystallization. Polym Adv Technol 31:2312–2324

    Article  CAS  Google Scholar 

  66. Cheng C, Yan K, Fan R, Qian L, Zhang Z, Sun K, Chen M (2016) Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach. Carbon 96:678–684

    Article  CAS  Google Scholar 

  67. Wang C-C, Song J-F, Bao H-M, Shen Q-D, Yang C-Z (2008) Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv Funct Mater 18:1299–1306

    Article  CAS  Google Scholar 

  68. Huang C, Zhang QM, Su J (2003) High-dielectric-constant all-polymer percolative composites. Appl Phys Lett 82:3502–3504

    Article  CAS  Google Scholar 

  69. Wang Z, Sun K, Wu H, Qu Y, Tian J, Ju L, Fan R (2022) Epsilon-near-zero response derived from collective oscillation in the metacomposites with ultralow plasma frequency. Compos Sci Technol 227:18

    Article  Google Scholar 

  70. Guo Z, Li A, Sun Z, Yan Z, Liu H, Qian L (2022) Negative permittivity behavior in microwave frequency from cellulose-derived carbon nanofibers. Adv Compos Hybrid Mater 5:50–57

    Article  CAS  Google Scholar 

  71. Estevez D, Qin F, Luo Y, Quan L, Mai Y-W, Panina L, Peng H-X (2019) Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites. Compos Sci Technol 171:206–217

    Article  CAS  Google Scholar 

  72. Liu M, Wu H, Wang Y, Ren J, Alshammari DA, Elsalam HEA, Azab IHE, Algadi H, Xie P, Liu Y (2023) Flexible cementite/ferroferric oxide/silicon dioxide/carbon nanofibers composite membrane with low-frequency dispersion weakly negative permittivity. Adv Compos Hybrid Mater 6:217

    Article  CAS  Google Scholar 

  73. Wang Z, Sun K, Xie P, Liu Y, Fan R (2017) Generation mechanism of negative permittivity and Kramers-Kronig relations in BaTiO3/Y3Fe5O12 multiferroic composites. Journal of Physics-Condensed Matter 29:365703

    Article  Google Scholar 

  74. Wang Z, Sun K, Tian J, He Q, Yang P, Duan W, Xie P, Hou Q, Fan R (2021) Weakly negative permittivity with an extremely low plasma frequency in polyvinyl alcohol/graphene membranous metacomposites. Journal of Materials Science-Materials in Electronics 32:23081–23089

    Article  CAS  Google Scholar 

  75. Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536

    Article  CAS  Google Scholar 

  76. Wu H, Zhang Z, Wang C, Abualnaja KM, Abo-Dief HM, Hou Q, Algadi H, Yin R, Liu X, Xie P, Liu Y (2023) Radio-frequency broadband epsilon-near-zero response in biocompatible silver nanoparticles/polystyrene films with three-dimensional honeycomb-like superstructures. Adv Compos Hybrid Mater 6:206

    Article  CAS  Google Scholar 

  77. Qu Y-P, Wu H-K, Xie P-T, Zeng N, Chen Y-L, Gong X, Yang J-L, Peng Q, Xie Y, Qi X-S (2023) Carbon nanotube-carbon black/CaCu3Ti4O12 ternary metacomposites with tunable negative permittivity and thermal conductivity fabricated by spark plasma sintering. Rare Met 42:4201–4211

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of Shandong Province (No. ZR2022ME098) and Research Projects of Jilin Electric Power Research Institute Co., Ltd. (No. KY-GS-23-02-03).

Author information

Authors and Affiliations

Authors

Contributions

Guangshen Li wrote the main manuscript text. Zhihao Sun, Zihao Guo, and Lei Qian provided pieces of advice and suggestions. Guangshen Li, Peng Wang, Benli Du, Shaoyao Tian, Han Ding, Yu Qiu, and Jingyu Bi prepared Figs. 1, 2, 3, 4, 5, 6, 7, and 8, S1S3, and Table S1. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lei Qian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 108 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Sun, Z., Guo, Z. et al. Dynamic modulation of permittivity properties via compression of carbon nanotube-impregnated cotton for wide epsilon-near-zero bandwidth. Adv Compos Hybrid Mater 7, 83 (2024). https://doi.org/10.1007/s42114-024-00895-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00895-6

Keywords

Navigation