Skip to main content
Log in

Nanobody immobilization on magnetic nanoparticles via monomeric streptavidin-biotin specific interaction for aflatoxin adsorption

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A new magnetic aflatoxin (AF) adsorbent was synthesized by nanobody (Nb28) immobilization on magnetic nanoparticles (MNPs). Monomeric streptavidin (mSA)-biotin specific interaction technology was used as a linker for nanobody immobilization. As a magnetic solid support, Fe3O4 nanoparticles were modified with tetraethyl orthosilicate (TEOS), (3-Aminopropyl) trimethoxysilane (APTMS), and glutaraldehyde (GA). According to the characterization results, modified MNPs were monodisperse, paramagnetic, with average diameter of 450 nm and they showed less susceptibility to oxidation on air. MNPs-Nb28 and MNPs-mSA-Nb28 enzymatic activity was analyzed by high-performance liquid chromatography (HPLC) and showed the highest level of adsorption under optimal conditions for aflatoxin G2 (AFG2), reaching concentration reduction up to 96.9% and 97.1%, respectively. MNPs-Nb28 showed higher stability over storage time, temperature, and pH compare to MNPs-mSA-Nb28. The maximum AF adsorption capacities of MNPs-Nb28 and MNPs-mSA-Nb28 were 193 µg·g−1 and 194 µg·g−1, respectively. Both nanocomposites were proven to be a reliable tool for fast and efficient removal of different aflatoxins (AFs) from solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Ismail A, Gonçalves BL, de Neeff DV, Ponzilacqua B, Coppa CFSC, Hintzsche H, Sajid M, Cruz AG, Corassin CH, Oliveira CAF (2018) Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Int Food Res Int 113:74–85. https://doi.org/10.1016/j.foodres.2018.06.067

    Article  CAS  Google Scholar 

  2. Peles F, Sipos P, Kovács S, Gyori Z, Pócsi I, PusztahelyI T (2021) Biological control and mitigation of aflatoxin contamination in commodities. Toxins 13(2):104. https://doi.org/10.3390/toxins13020104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. IARC (1993) Monographs on the evaluation of carcinogenic risks to humans. Lyon, France

    Google Scholar 

  4. Zhang DH, Li PW, Zhang Q, Zhang W, Huang YL, Ding XX, Jiang J (2009) Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure. Anal Chim Acta 636(1):63–69. https://doi.org/10.1016/j.aca.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  5. Edupuganti SR, Edupuganti OP, Hearty S, O’Kennedy R (2013) A highly stable, sensitive, regenerable and rapid immunoassay for detecting aflatoxin B1 in corn incorporating covalent AFB1 immobilization and a recombinant Fab antibody. Talanta 115:329–335. https://doi.org/10.1016/j.talanta.2013.05.012

    Article  CAS  PubMed  Google Scholar 

  6. Moghaddam A, Løbersli I, Gebhardt K, Braunagel M, Marvik OJ (2001) Selection and characterization of recombinant single-chain antibodies to the hapten Aflatoxin-B1 from naive recombinant antibody libraries. J Immunol Methods 254(1–2):169–181. https://doi.org/10.1016/S0022-1759(01)00413-6

    Article  CAS  PubMed  Google Scholar 

  7. He T, Wang YR, Li PW, Zhang Q, Lei JW, Zhang ZW, Ding XX, Zhou HY, Zhang W (2014) Nanobody-based enzyme immunoassay for aflatoxin in agro-products with high tolerance to cosolvent methanol. Anal Chem 86(17):8873–8880. https://doi.org/10.1021/ac502390c

    Article  CAS  PubMed  Google Scholar 

  8. Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349(1):293–299. https://doi.org/10.1016/j.jcis.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  9. Wang CJ, Liu XL, Yang TH, Sridhar D, Algadi H, Xu BB, El-Bahy ZM, Li HD, Ma Y, Li TX, Guo ZH (2023) An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep Purif Technol 320:124144. https://doi.org/10.1016/j.seppur.2023.124144

    Article  PubMed  PubMed Central  Google Scholar 

  10. Habila MA, Alothman ZA, El-Toni AM, Labis JP, Soylak M (2016) Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis. Talanta 154:539–547. https://doi.org/10.1016/j.talanta.2016.03.081

    Article  CAS  PubMed  Google Scholar 

  11. Dukenbayev K, Korolkov IV, Tishkevich DI, Kozlovskiy AL, Trukhanov SV, Gorin YG, Shumskaya EE, Kaniukov EY, Vinnik DA, Zdorovets MV, Anisovich M, Trukhanov AV, Tosi D, Molardi C (2019) Fe3O4 nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials 9(4):494. https://doi.org/10.3390/nano9040494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheykhan M, Yahyazadeh A, Rahemizadeh Z (2016) Cu-EDTA-modified APTMS-Fe3O4@SiO2 core-shell nanocatalyst: a novel magnetic recoverable catalyst for the Biginelli reaction. RSC Adv 6(41):34553–34563. https://doi.org/10.1039/c6ra02415g

    Article  CAS  Google Scholar 

  13. Liang MM, Fan KL, Pan Y, Jiang H, Wang F, Yang DL, Lu D, Feng J, Zhao JJ, Yang L, Yan XY (2013) Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem 85(1):308–312. https://doi.org/10.1021/ac302781r

    Article  CAS  PubMed  Google Scholar 

  14. Simonsen G, Strand M, Norrman J, Oye G (2019) Amino-functionalized iron oxide nanoparticles designed for adsorption of naphthenic acids. Colloids Surf A Physicochem Eng Asp 568:147–156. https://doi.org/10.1016/j.colsurfa.2019.02.010

    Article  Google Scholar 

  15. Li HC, Yang SQ, Hui D, Hong RY (2020) Progress in magnetic Fe3O4 nanomaterials in magnetic resonance imaging. Nanotechnol Rev 9(1):1265–1283. https://doi.org/10.1515/ntrev-2020-0095

    Article  CAS  Google Scholar 

  16. Li FS, Wu NN, Kimur H, Wang Y, Xu BB, Wang D, Li YF, Algadi H, Guo ZH, Du W, Hou CX (2023) Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett 15:220. https://doi.org/10.1007/s40820-023-01197-0

    Article  CAS  Google Scholar 

  17. Nguyen MD, Tran HV, Xu SJ, Lee TR (2021) Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl Sci 11(23):11301. https://doi.org/10.3390/app112311301

    Article  CAS  Google Scholar 

  18. Wang M, Nie C, Liu JB, Wu S (2023) Organic-inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels. Nat Commun 14:1000. https://doi.org/10.1038/s41467-023-36706-7

    Article  CAS  Google Scholar 

  19. Huang WL, Pan H, Hu ZX, Wang MJ, Wu LT, Zhang F (2023) A functional bimodal mesoporous silica nanoparticle with redox/cellulase dual-responsive gatekeepers for controlled release of fungicide. Sci Rep 13:802. https://doi.org/10.1038/s41598-023-27396-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoseini KS, Razaghi M, Nouri T, Khorasani M (2023) Direct coupling of CO2 with epoxides catalyzed by lanthanum(III) supported on magnetic mesoporous organosilica nanoparticles. Sci Rep 13:5521. https://doi.org/10.1038/s41598-023-32647-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun XL, Huls NF, Sigdel A, Sun SH (2012) Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett 12(1):246–251. https://doi.org/10.1021/nl2034514

    Article  CAS  PubMed  Google Scholar 

  22. Zhao DM, Liu YT, Wu CX (2023) Adsorption of Cr (VI) polluted water by Fe3O4@SiO2-APTMS nanocomposites prepared in the presence of ultrasonic irradiation for sustainable water resources utilization. Ultrason Sonochem 96:106439. https://doi.org/10.1016/j.ultsonch.2023.106439

    Article  CAS  Google Scholar 

  23. Can K, Ozmen M, Ersoz M (2009) Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloids Surf B Biointerfaces 71(1):154–159. https://doi.org/10.1016/j.colsurfb.2009.01.021

    Article  CAS  PubMed  Google Scholar 

  24. Xu JK, Sun JJ, Wang YJ, Sheng J, Wang F, Sus M (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19(8):11465–11486. https://doi.org/10.3390/molecules190811465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alegria-Schaffer A (2014) Protein Biotinylation. In: Lorsch J (ed) Laboratory methods in enzymology: protein Pt A, vol 536. Elsevier Academic Press Inc, San Diego, pp 109–114. https://doi.org/10.1016/b978-0-12-420070-8.00010-6

  26. Jain A, Cheng K (2017) The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J Control Release 245:27–40. https://doi.org/10.1016/j.jconrel.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  27. Yang T, Sun S, Ma M, Lin Q, Zhang L, Li Y, Luo F (2015) Optimizing immobilization of avidin on surface-modified magnetic nanoparticles: characterization and application of protein-immobilized nanoparticles. Bioprocess Biosyst Eng 38:2023–2034. https://doi.org/10.1007/s00449-015-1443-2

    Article  CAS  PubMed  Google Scholar 

  28. Rashid JIA, Yusof NA (2017) The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor. Sens Bio Sens Res 16:19–31. https://doi.org/10.1016/j.sbsr.2017.09.001

    Article  Google Scholar 

  29. Bonanni A, Pividori MI, del Valle M (2007) Application of the avidin-biotin interaction to immobilize DNA in the development of electrochemical impedance genosensors. Anal Bioanal Chem 389:851–861. https://doi.org/10.1007/s00216-007-1490-x

    Article  CAS  PubMed  Google Scholar 

  30. Chamma I, Letellier M, Butler C, Tessier B, Lim KH, Gauthereau I, Choquet D, Sibarita JB, Park S, Sainlos M, Thoumine O (2016) Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat Commun 7:10773. https://doi.org/10.1038/ncomms10773

    Article  CAS  Google Scholar 

  31. Wu SC, Ng KKS, Wong SL (2009) Engineering monomeric streptavidin and its ligands with infinite affinity in binding but reversibility in interaction. Proteins 77(2):404–412. https://doi.org/10.1002/prot.22446

    Article  CAS  PubMed  Google Scholar 

  32. Junejo Y, Baykal A, Sözeri H (2013) Simple hydrothermal synthesis of Fe3O4-PEG nanocomposite. Central Eur J Chem 11(9):1527–1532. https://doi.org/10.2478/s11532-013-0281-9

    Article  Google Scholar 

  33. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interf Sci 289(1):125–131. https://doi.org/10.1016/j.jcis.2005.02.019

    Article  CAS  Google Scholar 

  34. Danehchin M, Esmaeili AA (2023) Synthesis of Fe3O4@SiO2@Pr-NH2@DAP as a magnetic recyclable nano-catalyst for efficient synthesis of pyranothiazolopyrimidines and 4H-pyrans under solvent free condition. Sci Rep 13:14937. https://doi.org/10.1038/s41598-023-41793-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keziban C, Mustafa O, Mustafa E (2009) Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloids Surf B 71(1):154–159. https://doi.org/10.1016/j.colsurfb.2009.01.021

    Article  CAS  Google Scholar 

  36. Kroetsch A, Chin B, Nguyen V, Gao JY, Park S (2018) Functional expression of monomeric streptavidin and fusion proteins in Escherichia coli: applications in flow cytometry and ELISA. Appl Microbiol Biotechnol 102(23):10079–10089. https://doi.org/10.1007/s00253-018-9377-7

    Article  CAS  PubMed  Google Scholar 

  37. Radwan EK, Omar RA, Moursy AS (2023) Rapid adsorption of benzotriazole onto oxidized carbon cloth as an easily separable adsorbent. Sci Rep 13:17030. https://doi.org/10.1038/s41598-023-44067-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng H, Schenk J, Spreitzer D, Wolfinger T, Daghagheleh O (2021) Review on the oxidation behaviors and kinetics of magnetite in particle scale. Steel Res Int 92(8):2000687. https://doi.org/10.1002/srin.202000687

    Article  CAS  Google Scholar 

  39. Sajid M, Shuja S, Rong HP, Zhang JT (2023) Size-controlled synthesis of Fe3O4 and Fe3O4@SiO2 nanoparticles and their superparamagnetic properties tailoring. Prog Nat Sci Mater Int 33(1):116–119. https://doi.org/10.1016/j.pnsc.2022.08.003

    Article  CAS  Google Scholar 

  40. Eldeeb BA, El-Raheem WMA, Elbeltagi S (2023) Green synthesis of biocompatible Fe3O4 magnetic nanoparticles using Citrus Sinensis peels extract for their biological activities and magnetic-hyperthermia applications. Sci Rep 13:19000. https://doi.org/10.1038/s41598-023-46287-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karapinar HS, Bilgiç A (2022) A new magnetic Fe3O4@SiO2@TiO2-APTMS-CPA adsorbent for simple, fast and effective extraction of aflatoxins from some nuts. J Food Compos Anal 105:104261. https://doi.org/10.1016/j.jfca.2021.104261

    Article  CAS  Google Scholar 

  42. Eisavi R, Ahmadi F (2022) Fe3O4@SiO2-PMA-Cu magnetic nanoparticles as a novel catalyst for green synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. Sci Rep 12:11939. https://doi.org/10.1038/s41598-022-15980-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng GR, Xing JP, Pi ZF, Liu S, Liu ZQ, Song FR (2019) α-Glucosidase immobilization on functionalized Fe3O4 magnetic nanoparticles for screening of enzyme inhibitors. Chin Chem Lett 30(3):656–659. https://doi.org/10.1016/j.cclet.2018.12.003

    Article  CAS  Google Scholar 

  44. Ladole MR, Mevada JS, Pandit AB (2017) Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Biores Technol 239:117–126. https://doi.org/10.1016/j.biortech.2017.04.096

    Article  CAS  Google Scholar 

  45. Liu DM, Chen J, Shi YP (2018) Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends Anal Chem 102:332–342. https://doi.org/10.1016/j.trac.2018.03.011

    Article  CAS  Google Scholar 

  46. Demonte D, Dundas CM, Park S (2014) Expression and purification of soluble monomeric streptavidin in Escherichia coli. Appl Microbiol Biotechnol 98:6285–6295. https://doi.org/10.1007/s00253-014-5682-y

    Article  CAS  PubMed  Google Scholar 

  47. Mpye KL, Gildenhuys S, Mosebi S (2020) The effects of temperature on streptavidin-biotin binding using affinity isothermal titration calorimetry. AIMS Biophysics 7(4):236–247. https://doi.org/10.3934/biophy.2020018

    Article  CAS  Google Scholar 

  48. Desmyter A, Transue TR, Ghahroudi MA, Thi MHD, Poortmans F, Hamers R, Muyldermans S, Wyns L (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811. https://doi.org/10.1038/nsb0996-803

    Article  CAS  PubMed  Google Scholar 

  49. Stank A, Kokh DB, Fuller JC, Wade RC (2016) Protein binding pocket dynamics. Acc Chem Res 49(5):809–815. https://doi.org/10.1021/acs.accounts.5b00516

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2022C02023); Basic Research Special Fund Project of Zhejiang University of Science and Technology (2023QN024; 2023JLZD007); China Agricultural Research System of MOF and MARA (CARS-21). The authors are also thankful to Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing for providing necessary equipment support.

Author information

Authors and Affiliations

Authors

Contributions

Hongpeng Wang: review and editing and supervision; Alexey Tarabarov: visualization, investigation, writing original draft, and formal analysis; Qingqing Rao: review and editing and discussion; Xing Wang: project administration, resources; Yiyu Qi: data acquisition; Yongqi Wang: data curation; Zhuqian Xiao: methodology; Changjiang Lv: computation; Jiayao Yang: validation; Jun Huang: funding acquisition; Shengxiang Yang: conceptualization. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding authors

Correspondence to Zhuqian Xiao, Jun Huang or Shengxiang Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28.4 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tarabarov, A., Rao, Q. et al. Nanobody immobilization on magnetic nanoparticles via monomeric streptavidin-biotin specific interaction for aflatoxin adsorption. Adv Compos Hybrid Mater 7, 94 (2024). https://doi.org/10.1007/s42114-024-00893-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00893-8

Keywords

Navigation