Skip to main content
Log in

Application and carbon footprint evaluation of lignin-based composite materials

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Recently there has been a growing concern in various industries about the carbon footprint of materials due to environmental concerns and the need to adopt renewable materials. In this context, lignin, as a recyclable bioresource with multifunctional properties, is the largest renewable aromatic biomass resource in nature, with natural antioxidant, UV-resistant, molecular structure design flexibility and biocompatibility. It is also slowly biodegradable and therefore can be used as a carbon source for soil. Incorporating lignin into composites as a feedstock for sustainable product production can significantly reduce their carbon footprint. This paper systematically discusses the current state of research on lignin-based composites and the bottlenecks that urgently need to be overcome, and looks at the focus of work on functional applications of lignin as well as the future direction of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Fraser S (2023) Origins of the term “carbon footprint.” BMJ 383:2553. https://doi.org/10.1136/bmj.p2553

    Article  PubMed  Google Scholar 

  2. De Ambrogi M (2019) The carbon footprint. The Lancet 394(10209). https://doi.org/10.1016/s0140-6736(19)32639-x

  3. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33(48):2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  4. Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, Zhang X, Si C (2020) Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustainable Chemistry & Engineering 8(20):7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125

    Article  CAS  Google Scholar 

  5. Zhang K, Liu X, Bi J, BaQais A, Xu BB, Amin MA, Hou Y, Liu X, Li H, Algadi H, Xu J, Guo Z (2023) Bimetallic NiCe/Lay catalysts facilitated co-pyrolysis of oleic acid and methanol for efficiently preparing anaerobic hydrocarbon fuels. New J Chem 47(39):18272–18284. https://doi.org/10.1039/D3NJ01359F

    Article  CAS  Google Scholar 

  6. Kharissova AB, Kharissova OV, Kharisov BI, Méndez YP (2024) Carbon negative footprint materials: a review. Nano-Structures & Nano-Objects 37:101100. https://doi.org/10.1016/j.nanoso.2024.101100

    Article  CAS  Google Scholar 

  7. Xu J, Li C, Dai L, Xu C, Zhong Y, Yu F, Si C (2020) Biomass fractionation and lignin fractionation towards lignin valorization. Chemsuschem 13(17):4284–4295. https://doi.org/10.1002/cssc.202001491

    Article  CAS  PubMed  Google Scholar 

  8. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Materials 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.013

    Article  Google Scholar 

  9. Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817

    Article  CAS  Google Scholar 

  10. Duan Y, Yang H, Liu K, Xu T, Chen J, Xie H, Du H, Dai L, Si C (2023) Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv Compos Hybrid Mater 6(3):123. https://doi.org/10.1007/s42114-023-00700-w

    Article  CAS  Google Scholar 

  11. Hu J, Shi Y, Cheng Y, Liu Z (2023) A process-oriented model to measure product carbon footprint: an exploratory study based on multiple cases. Prod Plan Control 1–24. https://doi.org/10.1080/09537287.2023.2266410

  12. Liu K, Du H, Liu W, Liu H, Zhang M, Xu T, Si C (2022) Cellulose nanomaterials for oil exploration applications. Polym Rev 62(3):585–625. https://doi.org/10.1080/15583724.2021.2007121

    Article  CAS  Google Scholar 

  13. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K (2022) Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett 14(1):104. https://doi.org/10.1007/s40820-022-00849-x

    Article  CAS  Google Scholar 

  14. Du H, Zhang M, Liu K, Parit M, Jiang Z, Zhang X, Li B, Si C (2022) Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem Eng J 428:131994. https://doi.org/10.1016/j.cej.2021.131994

    Article  CAS  Google Scholar 

  15. Chen S, Bai L, Wang X, Li H, Xu BB, Algadi H, Guo Z (2024) Effect of hydrophobic nano-silica/β-nucleating agent on the crystallization behavior and mechanical properties of polypropylene random copolymers. Polym Int 73(2):108–118. https://doi.org/10.1002/pi.6575

    Article  CAS  Google Scholar 

  16. Xu R, Du H, Liu C, Liu H, Wu M, Zhang X, Si C, Li B (2021) An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J Clean Prod 313:127834. https://doi.org/10.1016/j.jclepro.2021.127834

    Article  CAS  Google Scholar 

  17. Müller LJ, Kätelhön A, Bringezu S, McCoy S, Suh S, Edwards R, Sick V, Kaiser S, Cuéllar-Franca R, El Khamlichi A, Lee JH, von der Assen N, Bardow A (2020) The carbon footprint of the carbon feedstock CO2. Energy Environ Sci 13(9):2979–2992. https://doi.org/10.1039/d0ee01530j

    Article  CAS  Google Scholar 

  18. Kang F, Jiang X, Wang Y, Ren J, Xu BB, Gao G, Huang Z, Guo Z (2023) Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg Chem Front 10(20):6045–6057. https://doi.org/10.1039/D3QI01283B

    Article  CAS  Google Scholar 

  19. Yang S, Shi C, Qu K, Sun Z, Li H, Xu B, Huang Z, Guo Z (2023) Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett 33(7):2063–2074. https://doi.org/10.1007/s42823-023-00540-0

    Article  Google Scholar 

  20. Duan Y, Liu K, Qi J, Li C, Xie H, Du H, Xu T, Si C (2023) Engineering lignocellulose-based composites for advanced structural materials. Ind Crops Prod 205:117562. https://doi.org/10.1016/j.indcrop.2023.117562

    Article  CAS  Google Scholar 

  21. Li W, Wang G, Sui W, Xu T, Li Z, Parvez AM, Si C (2022) Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 196:819–827. https://doi.org/10.1016/j.carbon.2022.05.053

    Article  CAS  Google Scholar 

  22. Xu R, Liu K, Du H, Liu H, Cao X, Zhao X, Qu G, Li X, Li B, Si C (2020) Falling leaves return to their roots: a review on the preparation of γ-valerolactone from lignocellulose and its application in the conversion of lignocellulose. Chemsuschem 13(24):6461–6476. https://doi.org/10.1002/cssc.202002008

    Article  CAS  PubMed  Google Scholar 

  23. Gao F, Liu Y, Jiao C, El-Bahy SM, Shao Q, El-Bahy ZM, Li H, Wasnik P, Algadi H, Xu BB, Wang N, Yuan Y, Guo Z (2023) Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J Polym Sci 61(21):2677–2687. https://doi.org/10.1002/pol.20230108

    Article  CAS  Google Scholar 

  24. Li W, Li C, Xu Y, Wang G, Xu T, Zhang W, Si C (2024) Heteroatom-doped and graphitization-enhanced lignin-derived hierarchically porous carbon via facile assembly of lignin-Fe coordination for high-voltage symmetric supercapacitors. J Colloid Interface Sci 659:374–384. https://doi.org/10.1016/j.jcis.2023.12.162

    Article  CAS  PubMed  Google Scholar 

  25. Tardy BL, Lizundia E, Guizani C, Hakkarainen M, Sipponen MH (2023) Prospects for the integration of lignin materials into the circular economy. Mater Today 65:122–132. https://doi.org/10.1016/j.mattod.2023.04.001

    Article  CAS  Google Scholar 

  26. Li F, Wu N, Kimura H, Wang Y, Xu BB, Wang D, Li Y, Algadi H, Guo Z, Du W, Hou C (2023) Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett 15(1):220. https://doi.org/10.1007/s40820-023-01197-0

    Article  CAS  Google Scholar 

  27. Li W, Sun H, Wang G, Sui W, Dai L, Si C (2023) Lignin as a green and multifunctional alternative to phenol for resin synthesis. Green Chem 25(6):2241–2261. https://doi.org/10.1039/D2GC04319J

    Article  CAS  Google Scholar 

  28. Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Lignin-based electrodes for energy storage application. Ind Crops Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425

    Article  CAS  Google Scholar 

  29. Zolfaghari S, Soltaninejad A, Okoro OV, Shavandi A, Denayer JFM, Sadeghi M, Karimi K (2024) Starch biocomposites preparation by incorporating organosolv lignins from potato crop residues. Int J Biol Macromol 259(Pt 2):129140. https://doi.org/10.1016/j.ijbiomac.2023.129140

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Y, Liu H, Yan L, Yang H, Dai L, Si C (2024) Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Adv Func Mater 34(7):2310653. https://doi.org/10.1002/adfm.202310653

    Article  CAS  Google Scholar 

  31. Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H, Zhang X, Si C (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem 23(24):9723–9746. https://doi.org/10.1039/D1GC02841C

    Article  CAS  Google Scholar 

  32. Li W, Wang G, Zhang W, Li J, Zhang B, Si C (2023) Lignin-derived 0–3 dimensional carbon materials: synthesis, configurations and applications. Ind Crops Prod 204:117342. https://doi.org/10.1016/j.indcrop.2023.117342

    Article  CAS  Google Scholar 

  33. Li W, Wang G, Sui W, Xu T, Dai L, Si C (2023) Lignin-derived heteroatom-doped hierarchically porous carbon for high-performance supercapacitors: “structure-function” relationships between lignin heterogeneity and carbon materials. Ind Crops Prod 204:117276. https://doi.org/10.1016/j.indcrop.2023.117276

    Article  CAS  Google Scholar 

  34. Zhang M, Duan Y, Chen T, Qi J, Xu T, Du H, Si C (2023) Lignocellulosic materials for energy storage devices. Ind Crops Prod 203:117174. https://doi.org/10.1016/j.indcrop.2023.117174

    Article  CAS  Google Scholar 

  35. Liu W, Lin Q, Chen S, Yang H, Liu K, Pang B, Xu T, Si C (2023) Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating. Adv Compos Hybrid Mater 6(4):149. https://doi.org/10.1007/s42114-023-00725-1

    Article  CAS  Google Scholar 

  36. Wenger J, Haas V, Stern T (2020) Why can we make anything from lignin except money? Towards a broader economic perspective in lignin research. Curr Forest Rep 6(4):294–308. https://doi.org/10.1007/s40725-020-00126-3

    Article  Google Scholar 

  37. Liu K, Zhang M, Zhou K, Liu X, Xu T, Huang Z, Du H, Si C (2024) Multifunctional nanocellulose-based electromagnetic interference shielding composites: design, functionality, and future prospects. Ind Crops Prod 210:118148. https://doi.org/10.1016/j.indcrop.2024.118148

    Article  CAS  Google Scholar 

  38. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M, Du H, Si C, Zhang K (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Func Mater 32(26):2113082. https://doi.org/10.1002/adfm.202113082

    Article  CAS  Google Scholar 

  39. Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, Dai L, Zhang M, Wang Y, Si C, Du H, Zhang K (2023) Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 15(1):98. https://doi.org/10.1007/s40820-023-01073-x

    Article  CAS  Google Scholar 

  40. Li W, Wang G, Sui W, Xu Y, Parvez AM, Si C (2023) Novel metal-lignin assembly strategy for one-pot fabrication of lignin-derived heteroatom-doped hierarchically porous carbon and its application in high-performance supercapacitor. Int J Biol Macromol 234:123603. https://doi.org/10.1016/j.ijbiomac.2023.123603

    Article  CAS  PubMed  Google Scholar 

  41. Kim B, Misra S, Maravelias CT (2023) Lignocellulosic fuel and chemical co-production. Joule 7(11):2403–2407. https://doi.org/10.1016/j.joule.2023.10.002

    Article  Google Scholar 

  42. Ghosal K, Ghosh S (2023) Biodegradable polymers from lignocellulosic biomass and synthetic plastic waste: an emerging alternative for biomedical applications. Mater Sci Eng R Rep 156:100761. https://doi.org/10.1016/j.mser.2023.100761

    Article  Google Scholar 

  43. Liu K, Du H, Zheng T, Liu H, Zhang M, Zhang R, Li H, Xie H, Zhang X, Ma M, Si C (2021) Recent advances in cellulose and its derivatives for oilfield applications. Carbohyd Polym 259:117740. https://doi.org/10.1016/j.carbpol.2021.117740

    Article  CAS  Google Scholar 

  44. Lin Z, Li X, Zhang H, Xu BB, Wasnik P, Li H, Singh MV, Ma Y, Li T, Guo Z (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10(15):4358–4392. https://doi.org/10.1039/D3QI00819C

    Article  CAS  Google Scholar 

  45. Xu Y, Li W, Xu T, Wang G, Huan W, Si C (2023) Straightforward fabrication of lignin-derived carbon-bridged graphitic carbon nitride for improved visible photocatalysis of tetracycline hydrochloride assisted by peroxymonosulfate activation. Adv Compos Hybrid Mater 6(6):197. https://doi.org/10.1007/s42114-023-00779-1

    Article  CAS  Google Scholar 

  46. Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S, Ni S, Xu T, Du H, Si C (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5(2):1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  CAS  Google Scholar 

  47. Zhang M, Wang Y, Liu K, Liu Y, Xu T, Du H, Si C (2023) Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohyd Polym 305:120567. https://doi.org/10.1016/j.carbpol.2023.120567

    Article  CAS  Google Scholar 

  48. Liu K, Du H, Liu W, Zhang M, Wang Y, Liu H, Zhang X, Xu T, Si C (2022) Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14(40):14902–14912. https://doi.org/10.1039/D2NR00468B

    Article  CAS  PubMed  Google Scholar 

  49. Tratnik N, Kuo P-Y, Tanguy NR, Gnanasekar P, Yan N (2020) Biobased epoxidized starch wood adhesives: effect of amylopectin and amylose content on adhesion properties. ACS Sustain Chem Eng 8(49):17997–18005. https://doi.org/10.1021/acssuschemeng.0c05716

    Article  CAS  Google Scholar 

  50. Ait Benhamou A, Boussetta A, Kassab Z, Nadifiyine M, Sehaqui H, El Achaby M, Moubarik A (2022) Application of UF adhesives containing unmodified and phosphate-modified cellulose microfibers in the manufacturing of particleboard composites. Ind Crops Prod 176:114318. https://doi.org/10.1016/j.indcrop.2021.114318

    Article  CAS  Google Scholar 

  51. Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C (2023) Sustainable polysaccharide-based materials for intelligent packaging. Carbohyd Polym 313:120851. https://doi.org/10.1016/j.carbpol.2023.120851

    Article  CAS  Google Scholar 

  52. Liu W, Du H, Liu K, Liu H, Xie H, Si C, Pang B, Zhang X (2021) Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohyd Polym 267:118220. https://doi.org/10.1016/j.carbpol.2021.118220

    Article  CAS  Google Scholar 

  53. Liu W, Zhang S, Liu K, Yang H, Lin Q, Xu T, Song X, Du H, Bai L, Yao S, Si C (2023) Sustainable preparation of lignocellulosic nanofibrils and cellulose nanopaper from poplar sawdust. J Clean Prod 384:135582. https://doi.org/10.1016/j.jclepro.2022.135582

    Article  CAS  Google Scholar 

  54. Sternberg J, Pilla S (2023) Chemical recycling of a lignin-based non-isocyanate polyurethane foam. Nat Sustain 6(3):316–324. https://doi.org/10.1038/s41893-022-01022-3

    Article  Google Scholar 

  55. Dessbesell L, Paleologou M, Leitch M, Pulkki R, Xu C (2020) Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renew Sustain Energy Rev 123:109768. https://doi.org/10.1016/j.rser.2020.109768

    Article  CAS  Google Scholar 

  56. Liu W, Liu K, Wang Y, Lin Q, Liu J, Du H, Pang B, Si C (2022) Sustainable production of cellulose nanofibrils from Kraft pulp for the stabilization of oil-in-water Pickering emulsions. Ind Crops Prod 185:115123. https://doi.org/10.1016/j.indcrop.2022.115123

    Article  CAS  Google Scholar 

  57. Chen S, Wang G, Sui W, Parvez AM, Si C (2020) Synthesis of lignin-functionalized phenolic nanosphere supported Ag nanoparticles with excellent dispersion stability and catalytic performance. Green Chem 22(9):2879–2888. https://doi.org/10.1039/C9GC04311J

    Article  CAS  Google Scholar 

  58. Xu T, Wang Y, Liu K, Zhao Q, Liang Q, Zhang M, Si C (2023) Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv Compos Hybrid Mater 6(3):108. https://doi.org/10.1007/s42114-023-00675-8

    Article  CAS  Google Scholar 

  59. Liang Q, Liu K, Xu T, Wang Y, Zhang Me, Zhao Q, Zhong W, Cai X, Zhao Z, Si C (2023) Interfacial Modulation of Ti3C2Tx MXene by Cellulose Nanofibrils to Construct Hybrid Fibers with High Volumetric Specific Capacitance. Small 2307344. https://doi.org/10.1002/smll.202307344

  60. Balakshin MY, Capanema EA, Sulaeva I, Schlee P, Huang Z, Feng M, Borghei M, Rojas OJ, Potthast A, Rosenau T (2021) New opportunities in the valorization of technical lignins. Chemsuschem 14(4):1016–1036. https://doi.org/10.1002/cssc.202002553

    Article  CAS  PubMed  Google Scholar 

  61. Yang H, Bai L, Duan Y, Xie H, Wang X, Zhang R, Ji X, Si C (2023) Upcycling corn straw into nanocelluloses via enzyme-assisted homogenization: application as building blocks for high-performance films. J Clean Prod 390:136215. https://doi.org/10.1016/j.jclepro.2023.136215

    Article  CAS  Google Scholar 

  62. Zhao Q, Xu T, Zhang M, Liu H, Du H, Si C (2023) Zn@cellulose nanofibrils composite three-dimensional carbon framework for long-life Zn anode. Ind Crops Prod 194:116343. https://doi.org/10.1016/j.indcrop.2023.116343

    Article  CAS  Google Scholar 

  63. Li W, Li T, Deng B, Xu T, Wang G, Hu W, Si C (2024) Fabrication of a facile self-floating lignin-based carbon Janus evaporators for efficient and stable solar desalination. Adv Compos Hybrid Mater 7:52. https://doi.org/10.1007/s42114-024-00849-y

  64. Ren M, Kong F, Zhou C, Fakayode OA, Liang J, Li H, Zhou M, Fan X (2023) Green, one-pot biomass hierarchical utilization strategy for lignin-containing cellulose nanofibrils and fractionated lignin preparation. Ind Crops Prod 203:117193. https://doi.org/10.1016/j.indcrop.2023.117193

    Article  CAS  Google Scholar 

  65. Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH (2020) Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 162:985–1024. https://doi.org/10.1016/j.ijbiomac.2020.06.168

    Article  CAS  PubMed  Google Scholar 

  66. Zheng Y, Moreno A, Zhang Y, Sipponen MH, Dai L (2024) Harnessing chemical functionality of lignin towards stimuli-responsive materials. Trends in Chemistry 6(2):62–78. https://doi.org/10.1016/j.trechm.2023.12.001

    Article  CAS  Google Scholar 

  67. Wang J, Deng N, Cao N, Li J, Sun J (2023) Life cycle analysis of a novel treatment method for recycling wood processing residues into the core material of wooden doors. J Cleaner Prod 415. https://doi.org/10.1016/j.jclepro.2023.137798

  68. Sharma AK, Ghodke PK, Goyal N, Bobde P, Kwon EE, Lin KA, Chen WH (2023) A critical review on biochar production from pine wastes, upgradation techniques, environmental sustainability, and challenges. Bioresour Technol 387:129632. https://doi.org/10.1016/j.biortech.2023.129632

    Article  CAS  PubMed  Google Scholar 

  69. Ferreira G, Das S, Rego A, Silva RRA, Gaspar D, Goswami S, Pereira RN, Fortunato E, Pereira L, Martins R, Nandy S (2024) Eco-designed recycled newspaper for energy harvesting and pressure sensor applications. Chem Eng J 480. https://doi.org/10.1016/j.cej.2023.147995

  70. Wen J, Wang B, Dai Z, Shi X, Jin Z, Wang H, Jiang X (2023) New insights into the green cement composites with low carbon footprint: the role of biochar as cement additive/alternative. Resour Conserv Recycl 197:107081. https://doi.org/10.1016/j.resconrec.2023.107081

    Article  CAS  Google Scholar 

  71. Hananto PWH, Trihastuti N, Prananda RR, Pratama AA, Rahayu HEP (2023) The challenge of blue economy in ASEAN 2023: climate change and regional security. IOP Conference Series: Earth Environ Sci 1270(1). https://doi.org/10.1088/1755-1315/1270/1/012030

  72. Rawat S, Kumar A, Bhaskar T (2022) Ionic liquids for separation of lignin and transformation into value-added chemicals. Curr Opin Green Sustain Chem 34:100582. https://doi.org/10.1016/j.cogsc.2021.100582

    Article  CAS  Google Scholar 

  73. Szalaty TJ, Klapiszewski Ł, Jesionowski T (2020) Recent developments in modification of lignin using ionic liquids for the fabrication of advanced materials–a review. J Mol Liq 301:112417. https://doi.org/10.1016/j.molliq.2019.112417

    Article  CAS  Google Scholar 

  74. Haq I, Mazumder P, Kalamdhad AS (2020) Recent advances in removal of lignin from paper industry wastewater and its industrial applications - a review. Bioresour Technol 312:123636. https://doi.org/10.1016/j.biortech.2020.123636

    Article  CAS  PubMed  Google Scholar 

  75. Li X, Xu H, Hu W, Zhou H, Zhu Y, Lu L, Si C (2022) One step synthesis of Mo-doped carbon microspheres for valorization corncob to levulinic acid. Ind Crops Prod 184:115019. https://doi.org/10.1016/j.indcrop.2022.115019

    Article  CAS  Google Scholar 

  76. Hu L, Du H, Liu C, Zhang Y, Yu G, Zhang X, Si C, Li B, Peng H (2019) Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process. ACS Sustain Chem Eng 7(1):1327–1336. https://doi.org/10.1021/acssuschemeng.8b05017

    Article  CAS  Google Scholar 

  77. Sun RC (2020) Lignin source and structural characterization. Chemsuschem 13(17):4385–4393. https://doi.org/10.1002/cssc.202001324

    Article  CAS  PubMed  Google Scholar 

  78. Dai L, Ma M, Xu J, Si C, Wang X, Liu Z, Ni Y (2020) All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem Mater 32(10):4324–4330. https://doi.org/10.1021/acs.chemmater.0c01198

    Article  CAS  Google Scholar 

  79. Peng Z, Jiang X, Si C, Joao Cárdenas-Oscanoa A, Huang C (2023) Advances of modified lignin as substitute to develop lignin-based phenol-formaldehyde resin adhesives. Chemsuschem 16(15):e202300174. https://doi.org/10.1002/cssc.202300174

    Article  CAS  PubMed  Google Scholar 

  80. Li Q, Wang S, Jin X, Huang C, Xiang Z (2020) The application of polysaccharides and their derivatives in pigment, barrier, and functional paper coatings. Polymers. https://doi.org/10.3390/polym12081837

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dong H, Zheng L, Yu P, Jiang Q, Wu Y, Huang C, Yin B (2020) Characterization and application of lignin–carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species. ACS Sustain Chem Eng 8(1):256–266. https://doi.org/10.1021/acssuschemeng.9b05290

    Article  CAS  Google Scholar 

  82. Agumba DO, Park G, Woong Kim J, Kim J (2024) Biobased natural fiber-reinforced composites derived from lignin-based resin and mercerized jute fibers. Mater Lett 360:136055. https://doi.org/10.1016/j.matlet.2024.136055

    Article  CAS  Google Scholar 

  83. G P, As S, Jayan JS, Raman A, Saritha A. Lignin based nano-composites: synthesis and applications. Process Safety and Environmental Protection. 2021;145:395–410. https://doi.org/10.1016/j.psep.2020.11.017

  84. Österberg M, Sipponen MH, Mattos BD, Rojas OJ (2020) Spherical lignin particles: a review on their sustainability and applications. Green Chem 22(9):2712–2733. https://doi.org/10.1039/d0gc00096e

    Article  CAS  Google Scholar 

  85. Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OJ, Puglia D (2021) Multifunctional lignin-based nanocomposites and nanohybrids. Green Chem 23(18):6698–6760. https://doi.org/10.1039/d1gc01684a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crops Prod 130:184–197. https://doi.org/10.1016/j.indcrop.2018.12.082

    Article  CAS  Google Scholar 

  87. Li X, Lu X, Liang M, Xu R, Yu Z, Duan B, Lu L, Si C (2020) Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst. Waste Manage 108:119–126. https://doi.org/10.1016/j.wasman.2020.04.039

    Article  CAS  PubMed  Google Scholar 

  88. Li X, Liu Q, Si C, Lu L, Luo C, Gu X, Liu W, Lu X (2018) Green and efficient production of furfural from corn cob over H-ZSM-5 using γ-valerolactone as solvent. Ind Crops Prod 120:343–350. https://doi.org/10.1016/j.indcrop.2018.04.065

    Article  CAS  Google Scholar 

  89. Liu R, Dai L, Xu C, Wang K, Zheng C, Si C (2020) Lignin-based micro- and nanomaterials and their composites in biomedical applications. Chemsuschem 13(17):4266–4283. https://doi.org/10.1002/cssc.202000783

    Article  CAS  PubMed  Google Scholar 

  90. Cheng J, Huang C, Liu X, Zhou X, Zhan Y, Chen T, Huang C, Meng X, Fang G, Ragauskas AJ (2023) Direct extraction of uniform lignin microspheres from bamboo using a polyol-based deep eutectic solvent. ACS Sustain Chem Eng 11(27):10158–10163. https://doi.org/10.1021/acssuschemeng.3c02344

    Article  CAS  Google Scholar 

  91. Deng J, Yun J, Gu Y, Yan B, Yin B, Huang C (2023) Evaluating the in vitro and in vivo prebiotic effects of different xylo-oligosaccharides obtained from bamboo shoots by hydrothermal pretreatment combined with endo-xylanase hydrolysis. Int J Mol Sci. https://doi.org/10.3390/ijms241713422

    Article  PubMed  PubMed Central  Google Scholar 

  92. Huang C, Lin W, Zheng Y, Zhao X, Ragauskas A, Meng X (2022) Evaluating the mechanism of milk protein as an efficient lignin blocker for boosting the enzymatic hydrolysis of lignocellulosic substrates. Green Chem 24(13):5263–5279. https://doi.org/10.1039/D2GC01160C

    Article  CAS  Google Scholar 

  93. Cheng J, Liu X, Huang C, Zhan Y, Huang C, Chen T, Meng X, Yoo CG, Fang G, Ragauskas AJ (2023) Novel biphasic DES/GVL solvent for effective biomass fractionation and valorization. Green Chem 25(16):6270–6281. https://doi.org/10.1039/D3GC01021J

    Article  CAS  Google Scholar 

  94. Jedrzejczak P, Podkoscielna B, Janczarek M, Kosmalska-Olanska A, Collins MN, Masek A, Klapiszewski L (2023) Tailoring TiO(2)-lignin hybrid materials as a bio-filler for the synthesis of composites based on epoxy resin. Int J Biol Macromol 235:123876. https://doi.org/10.1016/j.ijbiomac.2023.123876

    Article  CAS  PubMed  Google Scholar 

  95. Sekar P, Noordermeer JWM, Anyszka R, Gojzewski H, Podschun J, Blume A (2023) Hydrothermally treated lignin as a sustainable biobased filler for rubber compounds. ACS Appl Poly Mater 5(4):2501–2512. https://doi.org/10.1021/acsapm.2c02170

    Article  CAS  Google Scholar 

  96. Apostol I, Anghel N, Dinu MV, Ziarelli F, Mija A, Spiridon I (2023) An eco-friendly strategy for preparing lignin esters as filler in materials for removal of argan oil and sunflower oil. React Funct Polym 190. https://doi.org/10.1016/j.reactfunctpolym.2023.105620

  97. Ghiaskar A, Nouri MD (2023) A novel flexible biocomposite with hemp woven fabric and natural rubber based on lignin green filler: investigation numerical and experimental under high-velocity impact. Physica Scripta 98(10). https://doi.org/10.1088/1402-4896/acfa40

  98. Song X, Guo W, Zhu Z, Han G, Cheng W (2024) Preparation of uniform lignin/titanium dioxide nanoparticles by confined assembly: a multifunctional nanofiller for a waterborne polyurethane wood coating. Int J Biol Macromol 258(Pt 1):128827. https://doi.org/10.1016/j.ijbiomac.2023.128827

    Article  CAS  PubMed  Google Scholar 

  99. Yang Y, Zhou H, Chen X, Liu T, Zheng Y, Dai L, Si C (2023) Green and ultrastrong polyphenol lignin-based vitrimer adhesive with photothermal conversion property, wide temperature adaptability, and solvent resistance. Chem Eng J 477:147216. https://doi.org/10.1016/j.cej.2023.147216

    Article  CAS  Google Scholar 

  100. Zheng Y, Liu H, Yan L, Yang H, Dai L, Si C (2023) Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Adv Func Mater 34(7):2310653. https://doi.org/10.1002/adfm.202310653

    Article  CAS  Google Scholar 

  101. Wang X, Tang S, Chai S, Wang P, Qin J, Pei W, Bian H, Jiang Q, Huang C (2021) Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. Carbohyd Polym 270:118342. https://doi.org/10.1016/j.carbpol.2021.118342

    Article  CAS  Google Scholar 

  102. Li R, Zheng Y, Zhao X, Yong Q, Meng X, Ragauskas A, Huang C (2023) Recent advances in biomass pretreatment using biphasic solvent systems. Green Chem 25(7):2505–2523. https://doi.org/10.1039/D3GC00271C

    Article  CAS  Google Scholar 

  103. Qian H, Liu J, Wang X, Pei W, Fu C, Ma M, Huang C (2023) The state-of-the-art application of functional bacterial cellulose-based materials in biomedical fields. Carbohyd Polym 300:120252. https://doi.org/10.1016/j.carbpol.2022.120252

    Article  CAS  Google Scholar 

  104. Song F, Huang C, Zhu X, Liu C, Zhou Y, Jia P (2021) Synthesis and application of an environmental epoxy plasticizer with phthalate-like structure based on tung oil and cardanol for poly(vinyl chloride). J Appl Polym Sci 138(33):50809. https://doi.org/10.1002/app.50809

    Article  CAS  Google Scholar 

  105. Wang Z, Deuss PJ (2023) The isolation of lignin with native-like structure. Biotechnol Adv 68:108230. https://doi.org/10.1016/j.biotechadv.2023.108230

    Article  CAS  PubMed  Google Scholar 

  106. Liu W, Zhang Y, Li P, Wu Y, Li X, Zuo Y (2023) Exploring the effect of lignin on the chemical structure and microstructure of Chinese fir wood by segmental delignification. Wood Sci Technol 57(2):329–344. https://doi.org/10.1007/s00226-023-01461-x

    Article  CAS  Google Scholar 

  107. Karmanov A, Kocheva L, Rachkova N, Raskosha O (2023) Lignins of various taxonomical origins: structural features, adsorption and antioxidant properties. Iran Polym J 32(11):1377–1391. https://doi.org/10.1007/s13726-023-01210-8

    Article  CAS  Google Scholar 

  108. Odili CC, Olanrewaju OA, Ofordile CO, Adeosun SO. The structural and thermal characteristics of Musa paradisiaca L. lignin for carbon footprint reduction applications. Atmosphere. 2023;15(1). https://doi.org/10.3390/atmos15010055

  109. Liu W, Du H, Liu H, Xie H, Xu T, Zhao X, Liu Y, Zhang X, Si C (2020) Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain Chem Eng 8(44):16691–16700. https://doi.org/10.1021/acssuschemeng.0c06561

    Article  CAS  Google Scholar 

  110. Zhang S, Meng X, Bhagia S, Ji A, Dean Smith M, Wang Y-y, Liu B, Yoo CG, Harper DP, Ragauskas AJ (2024) 3D printed lignin/polymer composite with enhanced mechanical and anti-thermal-aging performance. Chem Eng J 481:148449. https://doi.org/10.1016/j.cej.2023.148449

  111. Zhao X, Zheng M, Gao X, Zhang J, Wang E, Gao Z (2021) The application of MOFs-based materials for antibacterials adsorption. Coord Chem Rev 440:213970. https://doi.org/10.1016/j.ccr.2021.213970

    Article  CAS  Google Scholar 

  112. Liu H, Liu K, Han X, Xie H, Si C, Liu W, Bae Y (2020) Cellulose nanofibrils-based hydrogels for biomedical applications: progresses and challenges. Curr Med Chem 27(28):4622–4646. https://doi.org/10.2174/0929867327666200303102859

    Article  CAS  PubMed  Google Scholar 

  113. Yin C, Wang J, Du G, Ni K, Wang H, Liu T, Yang H, Liu S, Ran X, Gao W, Yang L (2024) Developing a water-resistant cellulose-based wood adhesive based on dual dynamic Schiff base and disulfide bonds. Ind Crops Prod 209. https://doi.org/10.1016/j.indcrop.2023.118011

  114. Liu T, Yang Y, Yan L, Lin B, Dai L, Huang Z, Si C (2024) Custom-designed polyphenol lignin for the enhancement of poly(vinyl alcohol)-based wood adhesive. Int J Biol Macromol 258:129132. https://doi.org/10.1016/j.ijbiomac.2023.129132

    Article  CAS  PubMed  Google Scholar 

  115. Yang G, Gong Z, Luo X, Chen L, Shuai L (2023) Bonding wood with uncondensed lignins as adhesives. Nature 621(7979):511–515. https://doi.org/10.1038/s41586-023-06507-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhan B, Zhang L, Deng Y, Yan L (2023) A multifunctional lignin-based composite ultra-adhesive for wood processing. Green Chem 25(23):10061–10071. https://doi.org/10.1039/d3gc03542e

    Article  CAS  Google Scholar 

  117. Chen S, Fan D, Gui C (2023) Investigation of humidity-heat aging resistance of a soy protein adhesive fabricated by soybean meal and lignin-based polymer. Polym Testing 120:107971. https://doi.org/10.1016/j.polymertesting.2023.107971

    Article  CAS  Google Scholar 

  118. Karthäuser J, Raskop S, Slabohm M, Militz H (2024) Modification of plywood with phenol–formaldehyde resin: substitution of phenol by pyrolysis cleavage products of softwood kraft lignin. Eur J Wood Wood Prod. https://doi.org/10.1007/s00107-023-02029-z

    Article  Google Scholar 

  119. Zhang M, Xu T, Zhao Q, Liu K, Liang D, Si C (2024) Cellulose-based materials for carbon capture and conversion. Carbon Capt Sci Technol 10:100157. https://doi.org/10.1016/j.ccst.2023.100157

  120. Wang H, Zhang M, Hu J, Du H, Xu T, Si C (2022) Sustainable preparation of surface functionalized cellulose nanocrystals and their application for Pickering emulsions. Carbohyd Polym 297:120062. https://doi.org/10.1016/j.carbpol.2022.120062

    Article  CAS  Google Scholar 

  121. Wang H, Du H, Liu K, Liu H, Xu T, Zhang S, Chen X, Zhang R, Li H, Xie H, Zhang X, Si C (2021) Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohyd Polym 266:118107. https://doi.org/10.1016/j.carbpol.2021.118107

    Article  CAS  Google Scholar 

  122. Wang H, Xie H, Du H, Wang X, Liu W, Duan Y, Zhang X, Sun L, Zhang X, Si C (2020) Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohyd Polym 239:116233. https://doi.org/10.1016/j.carbpol.2020.116233

    Article  CAS  Google Scholar 

  123. Gao Z, Lang X, Chen S, Zhao C (2021) Mini-review on the synthesis of lignin-based phenolic resin. Energ Fuel 35(22):18385–18395. https://doi.org/10.1021/acs.energyfuels.1c03177

    Article  CAS  Google Scholar 

  124. Gong X, Meng Y, Lu J, Tao Y, Cheng Y, Wang H (2022) A review on lignin‐based phenolic resin adhesive.  Macromol Chem Phys 223(4). https://doi.org/10.1002/macp.202100434

  125. Maree C, Görgens JF, Tyhoda L (2022) Lignin phenol formaldehyde resins synthesised using south african spent pulping liquor. Waste Biomass Valori 13(8):3489–3507. https://doi.org/10.1007/s12649-022-01756-3

    Article  CAS  Google Scholar 

  126. Ayanleye S, Quin F, Zhang X, Shmulsky R (2023) Development of lignin-reinforced polyurethane adhesive for glued laminated timber. J Adhes Sci Technol 38(3):425–441. https://doi.org/10.1080/01694243.2023.2235799

    Article  CAS  Google Scholar 

  127. Shao J, Li X, Aladejana JT, Chen S, Li J (2023) Strengthening soybean protein adhesive anti-mildew properties: design strategies, enhancing mechanisms and application potential studies. Mater Today Commun 36:106426. https://doi.org/10.1016/j.mtcomm.2023.106426

    Article  CAS  Google Scholar 

  128. Chen S, Wang G, Sui W, Parvez AM, Dai L, Si C (2020) Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Ind Crops Prod 145:112164. https://doi.org/10.1016/j.indcrop.2020.112164

    Article  CAS  Google Scholar 

  129. Yang X, Xie H, Du H, Zhang X, Zou Z, Zou Y, Liu W, Lan H, Zhang X, Si C (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7(7):7200–7208. https://doi.org/10.1021/acssuschemeng.9b00209

    Article  CAS  Google Scholar 

  130. Jiang C, Hu J, Zhang C, Hota G, Wang J, Akhmedov NG (2023) Lignin oligomers from mild base-catalyzed depolymerization for potential application in aqueous soy adhesive as phenolic blends. React Chem Eng 8(10):2455–2465. https://doi.org/10.1039/d3re00224a

    Article  CAS  Google Scholar 

  131. Moretti C, Hoefnagels R, van Veen M, Corona B, Obydenkova S, Russell S, Jongerius A, Vural-Gürsel I, Junginger M (2022) Using lignin from local biorefineries for asphalts: LCA case study for the Netherlands. J Clean Prod 343:131063. https://doi.org/10.1016/j.jclepro.2022.131063

    Article  CAS  Google Scholar 

  132. Pham CD, Truong TM, Ly TB, Le PK (2023) Application of lignin from cellulose isolation process in the fabrication of chitosan/lignin film for UV-light blocking and anti-oxidation. Waste Biomass Valori. https://doi.org/10.1007/s12649-023-02353-8

    Article  Google Scholar 

  133. Zhou M, Fakayode OA, Ren M, Li H, Liang J, Zhou C (2023) Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit Rev Food Sci Nutr 1–19. https://doi.org/10.1080/10408398.2023.2181762

  134. Liu Q, Zhang H, Ren H, Zhai H (2022) Structural analysis of light-colored separated lignin (lignocresol) and its antioxidant properties. Int J Biol Macromol 197:169–178. https://doi.org/10.1016/j.ijbiomac.2021.12.144

    Article  CAS  PubMed  Google Scholar 

  135. Lu X, Gu X, Shi Y (2022) A review on lignin antioxidants: their sources, isolations, antioxidant activities and various applications. Int J Biol Macromol 210:716–741. https://doi.org/10.1016/j.ijbiomac.2022.04.228

    Article  CAS  PubMed  Google Scholar 

  136. An L, Si C, Wang G, Sui W, Tao Z (2019) Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind Crops Prod 128:177–185. https://doi.org/10.1016/j.indcrop.2018.11.009

    Article  CAS  Google Scholar 

  137. Wu Z, Thoresen PP, Matsakas L, Rova U, Christakopoulos P, Shi Y (2023) Facile synthesis of lignin-castor oil-based oleogels as green lubricating greases with excellent lubricating and antioxidation properties. ACS Sustain Chem Eng 11(34):12552–12561. https://doi.org/10.1021/acssuschemeng.3c01801

    Article  CAS  Google Scholar 

  138. Li K, Zhong W, Li P, Ren J, Jiang K, Wu W (2023) Recent advances in lignin antioxidant: antioxidant mechanism, evaluation methods, influence factors and various applications. Int J Biol Macromol 251:125992. https://doi.org/10.1016/j.ijbiomac.2023.125992

    Article  CAS  PubMed  Google Scholar 

  139. Hoan NX, Anh LT, Ha HT, Cuong DX (2023) Antioxidant activities, anticancer activity, physico-chemistry characteristics, and acute toxicity of alginate/lignin polymer. Molecules. https://doi.org/10.3390/molecules28135181

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sanchez LM, Hopkins AK, Espinosa E, Larrañeta E, Malinova D, McShane AN, Domínguez-Robles J, Rodríguez A (2023) Antioxidant cellulose nanofibers/lignin-based aerogels: a potential material for biomedical applications. Chem Biol Technol Agric 10(1):72. https://doi.org/10.1186/s40538-023-00438-z

    Article  CAS  Google Scholar 

  141. Pavaneli G, da Silva TA, Zawadzki SF, Sassaki GL, de Freitas RA, Ramos LP (2024) Production of highly antioxidant lignin nanoparticles from a hardwood technical lignin. Int J Biol Macromol 257(Pt 1):128612. https://doi.org/10.1016/j.ijbiomac.2023.128612

    Article  CAS  PubMed  Google Scholar 

  142. Cheng S, Jiang Y, Yin J, Zhang L, Han L, Zhu G, Zhang Y (2024) PBSeT/lignin: a complete bio-based biodegradable plastic with excellent mechanical and anti-UV properties. Euro Polym J 203. https://doi.org/10.1016/j.eurpolymj.2023.112638

  143. Bai Y, Li X, Wang X, Wang X, Yang X, Xin H, Sun D, Zhou J, Chai M (2024) Nanoscale composite lignin colloids with tunable visible colors used for anti-UV cosmetics. Langmuir 40(1):554–560. https://doi.org/10.1021/acs.langmuir.3c02764

    Article  CAS  PubMed  Google Scholar 

  144. Sadeghifar H, Ragauskas A (2022) Lignin as a bioactive polymer and heavy metal absorber - an overview. Chemosphere 309(Pt 1):136564. https://doi.org/10.1016/j.chemosphere.2022.136564

    Article  CAS  PubMed  Google Scholar 

  145. Zhao S, Li J, Yan Z, Lu T, Liu R, Han X, Cai C, Zhao S, Wang H (2021) Preparation of lignin-based filling antioxidant and its application in styrene-butadiene rubber. J Appl Polym Sci 138(43):51281. https://doi.org/10.1002/app.51281

    Article  CAS  Google Scholar 

  146. Yang H, Zheng H, Duan Y, Xu T, Xie H, Du H, Si C (2023) Nanocellulose-graphene composites: preparation and applications in flexible electronics. Int J Biol Macromol 253(Pt 3):126903. https://doi.org/10.1016/j.ijbiomac.2023.126903

    Article  CAS  PubMed  Google Scholar 

  147. Xu J, Liu R, Wang L, Pranovich A, Hemming J, Dai L, Xu C, Si C (2023) Towards a deep understanding of the biomass fractionation in respect of lignin nanoparticle formation. Adv Compos Hybrid Mater 6(6):214. https://doi.org/10.1007/s42114-023-00797-z

    Article  CAS  Google Scholar 

  148. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5(2):1168–1179. https://doi.org/10.1007/s42114-022-00427-0

    Article  CAS  Google Scholar 

  149. Li X, Chen X, Zhang S, Yin Y, Wang C (2021) UV-resistant transparent lignin-based polyurethane elastomer with repeatable processing performance. Euro Polym J 159. https://doi.org/10.1016/j.eurpolymj.2021.110763

  150. Zhang S, Cheng X, Fu Q, Li Y, Wu P, Qiao Y, Yan J, Si L, Waterhouse GIN, Li H, Ai S (2023) Pectin-nanolignin composite films with water resistance, UV resistance, and antibacterial activity. Food Hydrocoll 143. https://doi.org/10.1016/j.foodhyd.2023.108783

  151. Herrera R, Poohphajai F, Sandak A, Gordobil O (2023) Simultaneous improvement of surface wettability and UV resistance of wood with lignin-based treatments. Polym (Basel) 15(16). https://doi.org/10.3390/polym15163409

  152. Lv S, Liang S, Zuo J, Zhang S, Wang J, Wei D (2023) Lignin-based anti-UV functional materials: recent advances in preparation and application. Iran Polym J 32(11):1477–1497. https://doi.org/10.1007/s13726-023-01218-0

    Article  CAS  Google Scholar 

  153. Chen J, Yang H, Qian Y, Ouyang X, Yang D, Pang Y, Lei L, Qiu X (2023) Translucent lignin-based omniphobic polyurethane coating with antismudge and UV-blocking dual functionalities. ACS Sustain Chem Eng 11(6):2613–2622. https://doi.org/10.1021/acssuschemeng.2c06907

    Article  CAS  Google Scholar 

  154. Zheng T, Yang L, Zhang X-F, Yao J (2023) Conversion of corncob residue to sustainable lignin/cellulose film with efficient ultraviolet-blocking property. Ind Crops Prod 196:116517. https://doi.org/10.1016/j.indcrop.2023.116517

    Article  CAS  Google Scholar 

  155. Zhang C, Yang X, Yang S, Liu Z, Wang L (2022) Eco-friendly and multifunctional lignocellulosic nanofibre additives for enhancing pesticide deposition and retention. Chem Eng J 430:133011. https://doi.org/10.1016/j.cej.2021.133011

    Article  CAS  Google Scholar 

  156. Tran MH, Phan D-P, Lee EY (2021) Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens. Green Chem 23(13):4633–4646. https://doi.org/10.1039/d1gc01139a

    Article  CAS  Google Scholar 

  157. Wu Y, Gao J, Li JH, Chen BK (2023) Construction of photo-responsive lignin as a broad-spectrum sunscreen agent. Int J Biol Macromol 253(Pt 6):127289. https://doi.org/10.1016/j.ijbiomac.2023.127289

    Article  CAS  PubMed  Google Scholar 

  158. Lin Y, Lou H, Pang Y, Zhou M, Yang D, Qiu X (2023) A novel fractionation process for lignin with temperature-induced self-assembly. Ind Crops Prod 193:116172. https://doi.org/10.1016/j.indcrop.2022.116172

    Article  CAS  Google Scholar 

  159. Li Z, Chen L, Qiu X (2024) Fractionation of lignin using eco-friendly organic cosolvent and preparation of light-colored lignin micro-nanoparticles for sustainable natural sunscreens. Ind Crops Prod 208:117857. https://doi.org/10.1016/j.indcrop.2023.117857

    Article  CAS  Google Scholar 

  160. Dai L, Liu R, Si C (2018) A novel functional lignin-based filler for pyrolysis and feedstock recycling of poly(l-lactide). Green Chem 20(8):1777–1783. https://doi.org/10.1039/C7GC03863A

    Article  CAS  Google Scholar 

  161. Dai L, Liu R, Hu L-Q, Zou Z-F, Si C-L (2017) Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem Eng 5(9):8241–8249. https://doi.org/10.1021/acssuschemeng.7b01903

    Article  CAS  Google Scholar 

  162. Liu R, Dai L, Si C-L (2018) Mussel-inspired cellulose-based nanocomposite fibers for adsorption and photocatalytic degradation. ACS Sustain Chem Eng 6(11):15756–15763. https://doi.org/10.1021/acssuschemeng.8b04320

    Article  CAS  Google Scholar 

  163. Yu H, Wang B, Wang Y, Xu E, Wang R, Wu S, Wu W, Ji B, Feng X, Xu H, Zhong Y, Mao Z (2023) Lignin nanoparticles with high phenolic content as efficient antioxidant and sun-blocker for food and cosmetics. ACS Sustain Chem Eng 11(10):4082–4092. https://doi.org/10.1021/acssuschemeng.2c06070

    Article  CAS  Google Scholar 

  164. Majumdar S, Bhowal J (2022) Studies on production and evaluation of biopigment and synthetic dye decolorization capacity of laccase produced by A. oryzae cultivated on agro-waste. Bioprocess Biosyst Eng 45(1):45–60. https://doi.org/10.1007/s00449-021-02638-z

  165. Miller MD, Steinmaus C, Golub MS, Castorina R, Thilakartne R, Bradman A, Marty MA (2022) Potential impacts of synthetic food dyes on activity and attention in children: a review of the human and animal evidence. Environ Health 21(1):45. https://doi.org/10.1186/s12940-022-00849-9

    Article  PubMed  PubMed Central  Google Scholar 

  166. Christ-Ribeiro A, Maciel JV, Bier EM, Pinto JS, Dias D (2022) Application of electrochemical sensors in the determination of synthetic dyes in foods or beverages and their toxicological effects on human health: a review. Food Anal Methods 15(9):2394–2413. https://doi.org/10.1007/s12161-022-02282-7

    Article  Google Scholar 

  167. Ma Y, Lu Q, Lv S (2022) Dyeing of silk through iron ion-induced formation of hydrophobic lignin coatings. J Nat Fibers 19(16):13624–13639. https://doi.org/10.1080/15440478.2022.2101580

    Article  CAS  Google Scholar 

  168. Wu Z, Zhang X, Kang S, Liu Y, Bushra R, Guo J, Zhu W, Khan MR, Jin Y, Song J (2023) Preparation of biodegradable recycled fiber composite film using lignin-based polyurethane emulsion as strength agent. Ind CropsProd 197. https://doi.org/10.1016/j.indcrop.2023.116512

  169. Ye H, He Y, Li H, You T, Xu F (2023) Customized compatibilizer to improve the mechanical properties of polylactic acid/lignin composites via enhanced intermolecular interactions for 3D printing. Ind Crops Prod 205. https://doi.org/10.1016/j.indcrop.2023.117454

  170. Wang Y, Xu T, Liu K, Zhang M, Cai XM, Si C (2023) Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate 5(1):e428. https://doi.org/10.1002/agt2.428

    Article  CAS  Google Scholar 

  171. Zhang S, Fu Q, Li H, Li Y, Wu P, Ai S (2024) Polydopamine-coated lignin nanoparticles in polysaccharide-based films: a plasticizer, mechanical property enhancer, anti-ultraviolet agent and bioactive agent. Food Hydrocoll 147. https://doi.org/10.1016/j.foodhyd.2023.109325

  172. Liu Y, Zhao X, Zhang C, Liu B, Zhang H, Sun Z, Men Y, Hu W, Shao Z-B (2023) A hydrophilic lignin-based carbon fiber sizing agent assembled with CNTs towards strengthening epoxy resin. Chem Eng J 476. https://doi.org/10.1016/j.cej.2023.146624

  173. Wang Y, Xu T, Liu K, Zhang M, Zhao Q, Liang Q, Si C (2023) Nanocellulose-based advanced materials for flexible supercapacitor electrodes. Ind Crop Prod 204. https://doi.org/10.1016/j.indcrop.2023.117378

  174. Gregor-Svetec D, Leskovsek M, Leskovar B, Stankovic Elesini U, Vrabic-Brodnjak U (2021) Analysis of PLA composite filaments reinforced with lignin and polymerised-lignin-treated NFC. Polym (Basel) 13(13). https://doi.org/10.3390/polym13132174

  175. Zhang Q, Ma L, Zhang X, Zhang L, Wang Z (2022) Lignocellulose nanofiber/polylactic acid (LCNF/PLA) composite with internal lignin for enhanced performance as 3D printable filament. Ind Crops Prod 178:114590. https://doi.org/10.1016/j.indcrop.2022.114590

    Article  CAS  Google Scholar 

  176. Ding R, Duan Z, Sun Y, Yuan Q, Tien TT, Zúniga MG, Oh E, Nam J-D, Suhr J (2023) Enhancement of 3D printability and mechanical properties of polylactic acid/lignin biocomposites via interface engineering. Ind Crops Prod 194:116286. https://doi.org/10.1016/j.indcrop.2023.116286

    Article  CAS  Google Scholar 

  177. Long H, Hu L, Yang F, Cai Q, Zhong Z, Zhang S, Guan L, Xiao D, Zheng W, Zhou W, Wei Y, Frank K, Dong X (2022) Enhancing the performance of polylactic acid composites through self-assembly lignin nanospheres for fused deposition modeling. Compos B Eng 239:109968. https://doi.org/10.1016/j.compositesb.2022.109968

    Article  CAS  Google Scholar 

  178. Ou WX, Weng Y, Zeng JB, Li YD (2023) Fully biobased poly(lactic acid)/lignin composites compatibilized by epoxidized natural rubber. Int J Biol Macromol 236:123960. https://doi.org/10.1016/j.ijbiomac.2023.123960

    Article  CAS  PubMed  Google Scholar 

  179. Andrade-Guel M, Cabello-Alvarado C, Avila-Orta CA, Perez-Alvarez M, Cadenas-Pliego G, Reyes-Rodriguez PY, Rios-Gonzalez L (2022) Green flame-retardant composites based on PP/TiO(2)/lignin obtained by melt-mixing extrusion. Polym (Basel) 14(7). https://doi.org/10.3390/polym14071300

  180. Tanks J, Tamura K, Naito K, Nge TT, Yamada T (2023) Glycol lignin/MAH-g-PP blends and composites with exceptional mechanical properties for automotive applications. Compos Sci Technol 238. https://doi.org/10.1016/j.compscitech.2023.110030

  181. Lu J, Zhu W, Dai L, Si C, Ni Y (2019) Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohyd Polym 215:289–295. https://doi.org/10.1016/j.carbpol.2019.03.100

    Article  CAS  Google Scholar 

  182. Liu R, Dai L, Si C, Zeng Z (2018) Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohyd Polym 195:63–70. https://doi.org/10.1016/j.carbpol.2018.04.085

    Article  CAS  Google Scholar 

  183. Pregi E, Kun D, Faludi G, Móczó J, Pukánszky B (2022) Modeling the mechanical properties of polypropylene/lignin/flax hybrid composites. Mater Des 220:110833. https://doi.org/10.1016/j.matdes.2022.110833

    Article  CAS  Google Scholar 

  184. Pregi E, Faludi G, Kun D, Móczó J, Pukánszky B (2022) Three-component polypropylene/lignin/flax composites with high natural additive content for structural applications. Ind Crops Prod 182:114890. https://doi.org/10.1016/j.indcrop.2022.114890

    Article  CAS  Google Scholar 

  185. Yang C, Shen T, Tan Z, Zhuang W, Zhu C, Li M, Ying H (2023) Lignin modification for in-situ cured lignin-maleyl network in semi-crystalline polyamide/lignin shape memory composites. Ind Crops Prod 197. https://doi.org/10.1016/j.indcrop.2023.116665

  186. Sallem-Idrissi N, Van Velthem P, Sclavons M (2018) Fully bio-sourced nylon 11/raw lignin composites: thermal and mechanical performances. J Polym Environ 26(12):4405–4414. https://doi.org/10.1007/s10924-018-1311-7

    Article  CAS  Google Scholar 

  187. Mandlekar N, Cayla A, Rault F, Giraud S, Salaün F, Guan J (2019) Valorization of industrial lignin as biobased carbon source in fire retardant system for polyamide 11 blends. Polymers. https://doi.org/10.3390/polym11010180

    Article  PubMed  PubMed Central  Google Scholar 

  188. Muthuraj R, Hajee M, Horrocks AR, Kandola BK (2019) Biopolymer blends from hardwood lignin and bio-polyamides: compatibility and miscibility. Int J Biol Macromol 132:439–450. https://doi.org/10.1016/j.ijbiomac.2019.03.142

    Article  CAS  PubMed  Google Scholar 

  189. Ajdary R, Kretzschmar N, Baniasadi H, Trifol J, Seppälä JV, Partanen J, Rojas OJ (2021) Selective laser sintering of lignin-based composites. ACS Sustainable Chemistry & Engineering 9(7):2727–2735. https://doi.org/10.1021/acssuschemeng.0c07996

    Article  CAS  Google Scholar 

  190. Muthuraj R, Hajee M, Horrocks AR, Kandola BK (2021) Effect of compatibilizers on lignin/bio-polyamide blend carbon precursor filament properties and their potential for thermostabilisation and carbonisation. Polym Testing 95:107133. https://doi.org/10.1016/j.polymertesting.2021.107133

    Article  CAS  Google Scholar 

  191. Mariana M, Alfatah T, H.P.S AK, Yahya EB, Olaiya NG, Nuryawan A, Mistar EM, Abdullah CK, Abdulmadjid SN, Ismail H (2021) A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends. J Mater Res Technol 15:2287–2316. https://doi.org/10.1016/j.jmrt.2021.08.139

  192. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  CAS  Google Scholar 

  193. Zhou H, Mao Y, Zheng Y, Liu T, Yang Y, Si C, Wang L, Dai L (2023) Complete conversion of xylose-extracted corncob residues to bioplastic in a green and low carbon footprint way. Chem Eng J 471:144572. https://doi.org/10.1016/j.cej.2023.144572

    Article  CAS  Google Scholar 

  194. Du H, Liu C, Zhang Y, Yu G, Si C, Li B (2016) Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind Crops Prod 94:736–745. https://doi.org/10.1016/j.indcrop.2016.09.059

    Article  CAS  Google Scholar 

  195. Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Si C, Li B (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23(4):2389–2407. https://doi.org/10.1007/s10570-016-0963-5

    Article  CAS  Google Scholar 

  196. Xu J, Zhou H, Zheng Y, Li C, Dai L, Xu C, Si C (2022) A rapid and reversible pH control process for the formation and dissociation of lignin nanoparticles. Chemsuschem 15(8):e202200449. https://doi.org/10.1002/cssc.202200449

    Article  CAS  PubMed  Google Scholar 

  197. Baniasadi H, Lipponen S, Asplund M, Seppälä J (2023) High-concentration lignin biocomposites with low-melting point biopolyamide. Chem Eng J 451:138564. https://doi.org/10.1016/j.cej.2022.138564

    Article  CAS  Google Scholar 

  198. Jiang Y, Li J, Li D, Ma Y, Zhou S, Wang Y, Zhang D (2024) Bio-based hyperbranched epoxy resins: synthesis and recycling. Chem Soc Rev 53(2):624–655. https://doi.org/10.1039/d3cs00713h

    Article  CAS  PubMed  Google Scholar 

  199. Zheng Y, Liu T, He H, Lv Z, Xu J, Ding D, Dai L, Huang Z, Si C (2023) Lignin-based epoxy composite vitrimers with light-controlled remoldability. Adv Compos Hybrid Mater 6(1):53. https://doi.org/10.1007/s42114-023-00633-4

    Article  CAS  Google Scholar 

  200. Zou SL, Xiao LP, Li XY, Yin WZ, Sun RC (2023) Lignin-based composites with enhanced mechanical properties by acetone fractionation and epoxidation modification. iScience 26(3):106187. https://doi.org/10.1016/j.isci.2023.106187

  201. Li X, Li X, Ye J, Shen L, Tan W, Luo X (2023) Preparation and characterization of black liquor lignin-based epoxy composite film. Mater Lett 337:133998. https://doi.org/10.1016/j.matlet.2023.133998

    Article  CAS  Google Scholar 

  202. Verdross P, Guinchard S, Woodward RT, Bismarck A (2023) Black liquor-based epoxy resin: thermosets from untreated kraft lignin. Chem Eng J 475:145787. https://doi.org/10.1016/j.cej.2023.145787

    Article  CAS  Google Scholar 

  203. Zhen X, Cui X, Al-Haimi A, Wang X, Liang H, Xu Z, Wang Z (2024) Fully bio-based epoxy resins from lignin and epoxidized soybean oil: rigid-flexible, tunable properties and high lignin content. Int J Biol Macromol 254(Pt 2):127760. https://doi.org/10.1016/j.ijbiomac.2023.127760

    Article  CAS  PubMed  Google Scholar 

  204. Zheng J, Suh S (2019) Strategies to reduce the global carbon footprint of plastics. Nat Clim Chang 9(5):374–378. https://doi.org/10.1038/s41558-019-0459-z

    Article  Google Scholar 

  205. Cao Q, Wu Q, Dai L, Shen X, Si C (2021) A well-defined lignin-based filler for tuning the mechanical properties of polymethyl methacrylate. Green Chem 23(6):2329–2335. https://doi.org/10.1039/d1gc00249j

    Article  CAS  Google Scholar 

  206. Li K, Zhong W, Li P, Ren J, Jiang K, Wu W (2023) Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. Int J Biol Macromol 252:126281. https://doi.org/10.1016/j.ijbiomac.2023.126281

    Article  CAS  PubMed  Google Scholar 

  207. Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:7923068. https://doi.org/10.1155/2018/7923068

    Article  CAS  Google Scholar 

  208. Xie H, Zou Z, Du H, Zhang X, Wang X, Yang X, Wang H, Li G, Li L, Si C (2019) Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/oxalic acid hydrolysis. Carbohyd Polym 223:115116. https://doi.org/10.1016/j.carbpol.2019.115116

    Article  CAS  Google Scholar 

  209. Boarino A, Klok HA (2023) Opportunities and challenges for lignin valorization in food packaging, antimicrobial, and agricultural applications. Biomacromol 24(3):1065–1077. https://doi.org/10.1021/acs.biomac.2c01385

    Article  CAS  Google Scholar 

  210. Yang X, Xie H, Zou Y, Huang Y, Jiang L-W, Wang X, Tang D-H, Si C, Wang J-J (2021) Cost-effective and efficient plum-pudding-like FexNi1-xS2/C composite electrocatalysts for oxygen evolution reaction. Renew Energ 168:416–423. https://doi.org/10.1016/j.renene.2020.12.072

    Article  CAS  Google Scholar 

  211. Du H, Parit M, Liu K, Zhang M, Jiang Z, Huang T-S, Zhang X, Si C (2021) Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohyd Polym 270:118372. https://doi.org/10.1016/j.carbpol.2021.118372

    Article  CAS  Google Scholar 

  212. Elsherbiny DA, Abdelgawad AM, El-Naggar ME, Hemdan BA, Ghazanfari S, Jockenhovel S, Rojas OJ (2022) Bioactive tri-component nanofibers from cellulose acetate/lignin//N-vanillidene-phenylthiazole copper-(II) complex for potential diaper dermatitis control. Int J Biol Macromol 205:703–718. https://doi.org/10.1016/j.ijbiomac.2022.02.192

    Article  CAS  PubMed  Google Scholar 

  213. Fazeli M, Liu X, Rudd C (2022) The effect of waterborne polyurethane coating on the mechanical properties of epoxy-based composite containing recycled carbon fibres. Surf Interfaces 29:101684. https://doi.org/10.1016/j.surfin.2021.101684

    Article  CAS  Google Scholar 

  214. Mujtaba M, Fernandes Fraceto L, Fazeli M, Mukherjee S, Savassa SM, Araujo de Medeiros G, do Espírito Santo Pereira A, Mancini SD, Lipponen J, Vilaplana F (2023) Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Clean Prod 402:136815. https://doi.org/10.1016/j.jclepro.2023.136815

  215. Yang Y, Cao H, Liu R, Wang Y, Zhu M, Su C, Lv X, Zhao J, Qin P, Cai D (2023) Fabrication of ultraviolet resistant and anti-bacterial non-isocyanate polyurethanes using the oligomers from the reductive catalytic fractionated lignin oil. Ind Crops Prod 193:116213. https://doi.org/10.1016/j.indcrop.2022.116213

    Article  CAS  Google Scholar 

  216. Xiao L, Zhang X, Fu Q, Xu P, Liu T, Wang Z, Yang W, Ma P (2023) One step to simultaneously improve the antibacterial activity and compatibility with PBAT of nanolignin via surface modification. ACS Sustain Chem Eng 11(40):14773–14781. https://doi.org/10.1021/acssuschemeng.3c04758

    Article  CAS  Google Scholar 

  217. Li Z-C, Li W, Wang D-X, Wang R, Tang A-N, Kong D-M (2022) Lignin-based hydrogen-bonded covalent organic polymers as functional “switches” of modified atmosphere packaging membranes for preservation of perishable foods. ACS Sustain Chem Eng 10(33):10803–10815. https://doi.org/10.1021/acssuschemeng.2c01735

    Article  CAS  Google Scholar 

  218. Gao Y-F, Ma C-Y, Sun Q, Zhang X-X, Liu J, Wen J-L, Chen R-X, Wang H-L, Yuan T-Q (2024) Rapid and efficient preparation of cationized lignin for downstream high value-added utilization of biodegradable antimicrobial nanofibrous membranes. Chem Eng J 481:148514. https://doi.org/10.1016/j.cej.2023.148514

    Article  CAS  Google Scholar 

  219. Perveen S, Zhai R, Zhang Y, Kawish M, Shah MR, Chen S, Xu Z, Qiufeng D, Jin M (2023) Boosting photo-induced antimicrobial activity of lignin nanoparticles with curcumin and zinc oxide. Int J Biol Macromol 253(Pt 7):127433. https://doi.org/10.1016/j.ijbiomac.2023.127433

    Article  CAS  PubMed  Google Scholar 

  220. You SM, Choi JH, Ryu SY, Byeon JW, Kim H, Cha HG (2024) Investigation of lignin substructures participating in self-assembly for the synthesis of monodisperse lignin spherical particles. Int J Biol Macromol 259(Pt 1):129214. https://doi.org/10.1016/j.ijbiomac.2024.129214

    Article  CAS  PubMed  Google Scholar 

  221. Lu Y, Jiang M, Pan Y, Wang F, Xu W, Zhou Y, Du X (2024) Preparation of Ag@lignin nanotubes for the development of antimicrobial biodegradable films from corn straw. Int J Biol Macromol 254(Pt 2):127630. https://doi.org/10.1016/j.ijbiomac.2023.127630

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF (JSBEM-S-202208), the National Natural Science Foundation of China (32171717, 32271814, 32371806, 32301530, 32071720), Tianjin Excellent Special Commissioner for Agricultural Science and Technology Project (23ZYCGSN00580), Natural Science Foundation of Tianjin (23JCZDJC00630, 22JCYBJC01560),Young Elite Scientist Sponsorship Program by Cast (No. YESS20230242), and the China Postdoctoral Science Foundation (2023M740562, 2023M740536).

Author information

Authors and Affiliations

Authors

Contributions

Yanfan Yang wrote the original draft and prepared all the figures. Yanhua Guan and Chongyang Li gathered the information and edited the main manuscript text. Chuanling Si, Ting Xu, and Jinmei Xu co-supervised the work and Lin Dai reviewed & edited, guiding the manuscript. All authors have given approval for the final version of the manuscript.

Corresponding authors

Correspondence to Lin Dai, Jinmei Xu or Chuanling Si.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Guan, Y., Li, C. et al. Application and carbon footprint evaluation of lignin-based composite materials. Adv Compos Hybrid Mater 7, 61 (2024). https://doi.org/10.1007/s42114-024-00873-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00873-y

Keywords

Navigation