Skip to main content
Log in

Towards a deep understanding of the biomass fractionation in respect of lignin nanoparticle formation

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In recent years, lignin-based nanomaterials have become increasingly relevant for researchers and producers of functional material applications due to their green and sustainable nature. However, there is still a challenge in controlling the fabrication of lignin nanoparticles (LNPs). In the current study, we explored an environmentally friendly sequential hot water extraction with an accelerated solvent extractor (ASE) to obtain a lignin-based fraction for the controllable production of LNPs. The lignin-based fractions are obtained from both Norway spruce heartwood (HW) and sapwood (SW) after sequential hot water extraction followed by separation with XAD 8 resin column and desorption with methanol (methanol fraction, MF). LNPs were successfully prepared from HWMF and SWMF with different physicochemical properties using acetonitrile/water binary solvent in an ultrasonic bath only within 1 min. The size of LNPs increased with the severity of wood ASE extraction, which is related to the reduction of β-O-4 bond, the increase of phenolic hydroxyl groups, and the decrease of aliphatic hydroxyl groups in MF. However, no direct relationship between the size of LNPs and molar mass as well as carbohydrate content was found. The controllable preparation of LNPs was directly dependent on the ASE extraction conditions without complex chemical modification. This study presents a green method for controllable preparation of LNPs and provides a promising new value-added valorization pathway for lignin-based fractions (including lignin and lignin carbohydrate complex) from wood hot water extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Xu T, Du H, Liu H, Liu W, Zhang X, Si C et al (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33(48):e2101368. https://doi.org/10.1002/adma.202101368

    Article  Google Scholar 

  2. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M et al (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose‐based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater 32(26):2113082. https://doi.org/10.1002/adfm.202113082

  3. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X et al (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884. https://doi.org/10.1007/s42114-021-00312-2

  4. Liu K, Liu W, Li W, Duan Y, Zhou K, Ni S et al (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5(2):1078–1089. https://doi.org/10.1007/s42114-022-00425-2

  5. Cai J, Xi S, Zhang C, Li X, Helal MH, El-Bahy ZM et al (2023) Overview of biomass valorization: case study of nanocarbons, biofuels and their derivatives. J Agric Food Res 14. https://doi.org/10.1016/j.jafr.2023.100714

  6. Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohyd Polym 52(2):175–187. https://doi.org/10.1016/s0144-8617(02)00288-6

    Article  Google Scholar 

  7. Xu J, Li C, Dai L, Xu C, Zhong Y, Yu F et al (2020) Biomass fractionation and lignin fractionation towards lignin valorization. Chemsuschem 13(17):4284–4295. https://doi.org/10.1002/cssc.202001491

    Article  Google Scholar 

  8. Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H et al (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem 23(24):9723–9746. https://doi.org/10.1039/D1GC02841C

  9. Xu T, Wang Y, Liu K, Zhao Q, Liang Q, Zhang M et al (2023) Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv Compos Hybrid Mater 6(3):108. https://doi.org/10.1007/s42114-023-00675-8

  10. Liu K, Du H, Liu W, Zhang M, Wang Y, Liu H et al (2022) Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14(40):14902–14912. https://doi.org/10.1039/D2NR00468B

  11. Kim SM, Dien BS, Tumbleson ME, Rausch KD, Singh V (2016) Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling. Biores Technol 216:706–713. https://doi.org/10.1016/j.biortech.2016.06.003

    Article  Google Scholar 

  12. Pielhop T, Larrazábal GO, Studer MH, Brethauer S, Seidel C-M, Rudolf von Rohr P. Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation. Green Chemistry. 2015;17(6):3521–32. https://doi.org/10.1039/C4GC02381A

  13. Markstedt K, Xu W, Liu J, Xu C, Gatenholm P (2017) Synthesis of tunable hydrogels based on O-acetyl-galactoglucomannans from spruce. Carbohyd Polym 157:1349–1357. https://doi.org/10.1016/j.carbpol.2016.11.009

    Article  Google Scholar 

  14. Yong Q, Xu J, Wang L, Tirri T, Gao H, Liao Y et al (2022) Synthesis of galactoglucomannan-based latex via emulsion polymerization. Carbohyd Polym 291:119565. https://doi.org/10.1016/j.carbpol.2022.119565

    Article  Google Scholar 

  15. Matsakas L, Karnaouri A, Cwirzen A, Rova U, Christakopoulos P (2018) Formation of lignin nanoparticles by combining organosolv pretreatment of birch biomass and homogenization processes. Molecules 23(7):1822. https://doi.org/10.3390/molecules23071822

    Article  Google Scholar 

  16. Zhang Y, Wang S, Xu W, Cheng F, Pranovich A, Smeds A et al (2018) Valorization of lignin–carbohydrate complexes from hydrolysates of Norway spruce: efficient separation, structural characterization, and antioxidant activity. ACS Sustain Chem Eng 7(1):1447–1456. https://doi.org/10.1021/acssuschemeng.8b05142

    Article  Google Scholar 

  17. Tarasov D, Schlee P, Pranovich A, Moreno A, Wang L, Rigo D et al (2022) AqSO biorefinery: a green and parameter-controlled process for the production of lignin-carbohydrate hybrid materials. Green Chem 24(17):6639–6656. https://doi.org/10.1039/d2gc02171d

    Article  Google Scholar 

  18. Yu Q, Liu J, Zhuang X, Yuan Z, Wang W, Qi W et al (2016) Liquid hot water pretreatment of energy grasses and its influence of physico-chemical changes on enzymatic digestibility. Biores Technol 199:265–270. https://doi.org/10.1016/j.biortech.2015.07.086

    Article  Google Scholar 

  19. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H et al (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.013

  20. Zhou S-J, Wang H-M, Xiong S-J, Sun J-M, Wang Y-Y, Yu S et al (2021) Technical lignin valorization in biodegradable polyester-based plastics (BPPs). ACS Sustain Chem Eng 9(36):12017–12042. https://doi.org/10.1021/acssuschemeng.1c03705

    Article  Google Scholar 

  21. Cao QW, Wu Q, Dai L, Shen XJ, Si CL (2021) A well-defined lignin-based filler for tuning the mechanical properties of polymethyl methacrylate. Green Chem 23(6):2329–2335. https://doi.org/10.1039/d1gc00249j

    Article  Google Scholar 

  22. Dai L, Liu R, Hu LQ, Zou ZF, Si CL (2017) Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem Eng 5(9):8241–8249. https://doi.org/10.1021/acssuschemeng.7b01903

    Article  Google Scholar 

  23. Wang L, Wang Q, Slita A, Backman O, Gounani Z, Rosqvist E et al (2022) Digital light processing (DLP) 3D-fabricated antimicrobial hydrogel with a sustainable resin of methacrylated woody polysaccharides and hybrid silver-lignin nanospheres. Green Chem 24(5):2129–2145. https://doi.org/10.1039/d1gc03841a

    Article  Google Scholar 

  24. Yang Y, Zhou H, Chen X, Liu T, Zheng Y, Dai L et al (2023) Green and ultrastrong polyphenol lignin-based vitrimer adhesive with photothermal conversion property, wide temperature adaptability, and solvent resistance. Chem Eng J 147216. https://doi.org/10.1016/j.cej.2023.147216

  25. Zheng Y, Liu T, He H, Lv Z, Xu J, Ding D et al (2023) Lignin-based epoxy composite vitrimers with light-controlled remoldability. Adv Compos Hybrid Mater 6(1):53. https://doi.org/10.1007/s42114-023-00633-4

    Article  Google Scholar 

  26. Zheng Y, Liu H, Yan L, Yang H, Dai L, Si C (2023) Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Adv Funct Mater 2310653. https://doi.org/10.1002/adfm.202310653

  27. Dai L, Ma M, Xu J, Si C, Wang X, Liu Z et al (2020) All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem Mater 32(10):4324–4330. https://doi.org/10.1021/acs.chemmater.0c01198

    Article  Google Scholar 

  28. Ou J, Li S, Li W, Liu C, Ren J, Yue F (2022) Revealing the structural influence on lignin phenolation and its nanoparticle fabrication with tunable sizes. ACS Sustainable Chemistry & Engineering 10(45):14845–14854. https://doi.org/10.1021/acssuschemeng.2c04701

    Article  Google Scholar 

  29. Pylypchuk IV, Riazanova A, Lindström ME, Sevastyanova O (2021) Structural and molecular-weight-dependency in the formation of lignin nanoparticles from fractionated soft- and hardwood lignins. Green Chem 23(8):3061–3072. https://doi.org/10.1039/D0GC04058D

    Article  Google Scholar 

  30. Liu R, Smeds A, Tirri T, Zhang H, Willför S, Xu C (2022) Influence of carbohydrates covalently bonded with lignin on solvent fractionation, thermal properties, and nanoparticle formation of lignin. ACS Sustainable Chemistry & Engineering 10(44):14588–14599. https://doi.org/10.1021/acssuschemeng.2c04498

    Article  Google Scholar 

  31. Ma M, Dai L, Xu J, Liu Z, Ni Y (2020) A simple and effective approach to fabricate lignin nanoparticles with tunable sizes based on lignin fractionation. Green Chem 22(6):2011–2017. https://doi.org/10.1039/d0gc00377h

    Article  Google Scholar 

  32. Ma M, Dai L, Si C, Hui L, Liu Z, Ni Y (2019) A facile preparation of super long-term stable lignin nanoparticles from black liquor. ChemSusChem 12(24):5239–5245. https://doi.org/10.1002/cssc.201902287

    Article  Google Scholar 

  33. Liu R, Smeds A, Wang L, Pranovich A, Hemming J, Willför S et al (2021) Fractionation of lignin with decreased heterogeneity: based on a detailed characteristics study of sequentially extracted softwood kraft lignin. ACS Sustainable Chemistry & Engineering 9(41):13862–13873. https://doi.org/10.1021/acssuschemeng.1c04725

    Article  Google Scholar 

  34. Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38(4):245–256. https://doi.org/10.1007/s00226-004-0241-9

    Article  Google Scholar 

  35. Andersson KI, Pranovich AV, Norgren M, Eriksson M, Holmbom B (2008) Effects of biological treatment on the chemical structure of dissolved lignin-related substances in effluent from thermomechanical pulping. Nord Pulp Pap Res J 23(2):164–171. https://doi.org/10.3183/npprj-2008-23-02-p164-171

    Article  Google Scholar 

  36. Xu J, Zhou H, Zheng Y, Li C, Dai L, Xu C et al (2022) A rapid and reversible pH control process for the formation and dissociation of lignin nanoparticles. ChemSusChem 15(8):e202200449. https://doi.org/10.1002/cssc.202200449

  37. Wang L, Tan L, Hu L, Wang X, Koppolu R, Tirri T et al (2021) On laccase-catalyzed polymerization of biorefinery lignin fractions and alignment of lignin nanoparticles on the nanocellulose surface via one-pot water-phase synthesis. ACS Sustain Chem Eng 9(26):8770–8782. https://doi.org/10.1021/acssuschemeng.1c01576

    Article  Google Scholar 

  38. Sundheq A, Sundherg K, Lillandt C, Holmhom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11(4):216–219. https://doi.org/10.3183/npprj-1996-11-04-p216-219

    Article  Google Scholar 

  39. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5(2):1078-1089. https://doi.org/10.1007/s42114-022-00425-2

  40. Willför S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans–a potential raw material for hydrocolloids and novel advanced natural materials. Carbohyd Polym 72(2):197–210. https://doi.org/10.1016/j.carbpol.2007.08.006

    Article  Google Scholar 

  41. Mishra PK, Ekielski A (2019) The self-assembly of lignin and its application in nanoparticle synthesis: a short review. Nanomaterials-Basel 9(2):243. https://doi.org/10.3390/nano9020243

    Article  Google Scholar 

  42. Zhang Y, Qin M, Xu W, Fu Y, Wang Z, Li Z et al (2018) Structural changes of bamboo-derived lignin in an integrated process of autohydrolysis and formic acid inducing rapid delignification. Ind Crops Prod 115:194–201. https://doi.org/10.1016/j.indcrop.2018.02.025

    Article  Google Scholar 

  43. Yao L, Yoo CG, Meng X, Li M, Pu Y, Ragauskas AJ et al (2018) A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment. Biotechnol Biofuels 11:96. https://doi.org/10.1186/s13068-018-1087-y

    Article  Google Scholar 

  44. Uçar G, Meier D, Faix O, Wegener G (2004) Analytical pyrolysis and FTIR spectroscopy of fossil Sequoiadendron giganteum (Lindl.) wood and MWLs isolated hereof. Eur J Wood Wood Prod 63(1):57–63. https://doi.org/10.1007/s00107-004-0530-x

  45. Bertolo MRV, Brenelli de Paiva LB, Nascimento VM, Gandin CA, Neto MO, Driemeier CE et al (2019) Lignins from sugarcane bagasse: renewable source of nanoparticles as Pickering emulsions stabilizers for bioactive compounds encapsulation. Ind Crops Prod 140:111591. https://doi.org/10.1016/j.indcrop.2019.111591

  46. Pang T, Wang G, Sun H, Wang L, Liu Q, Sui W et al (2020) Lignin fractionation for reduced heterogeneity in self-assembly nanosizing: toward targeted preparation of uniform lignin nanoparticles with small size. ACS Sustain Chem Eng 8(24):9174–9183. https://doi.org/10.1021/acssuschemeng.0c02967

    Article  Google Scholar 

  47. Narapakdeesakul D, Sridach W, Wittaya T (2013) Recovery, characteristics and potential use as linerboard coatings material of lignin from oil palm empty fruit bunches’ black liquor. Ind Crops Prod 50:8–14. https://doi.org/10.1016/j.indcrop.2013.07.011

    Article  Google Scholar 

  48. Wang H-M, Sun Y-C, Wang B, Sun D, Shi Q, Zheng L et al (2019) Insights into the structural changes and potentials of lignin from bagasse during the integrated delignification process. ACS Sustain Chem Eng 7(16):13886–13897. https://doi.org/10.1021/acssuschemeng.9b02071

    Article  Google Scholar 

  49. Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep 8(1):6538. https://doi.org/10.1038/s41598-018-24328-9

    Article  Google Scholar 

  50. Wang X, Zhang Y, Wang L, Wang X, Hou Q, Willför S et al (2021) Facile fractionation of bamboo hydrolysate and characterization of isolated lignin and lignin-carbohydrate complexes. Holzforschung 75(4):399–408. https://doi.org/10.1515/hf-2020-0040

    Article  Google Scholar 

  51. Tarasov D, Leitch M, Fatehi P (2018) Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol Biofuels 11(1):269. https://doi.org/10.1186/s13068-018-1262-1

    Article  Google Scholar 

  52. Capanema EA, Balakshin MY, Kadla JF (2004) A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J Agric Food Chem 52(7):1850–1860. https://doi.org/10.1021/jf035282b

    Article  Google Scholar 

  53. Antonino LD, Gouveia JR, de Sousa Junior RR, Garcia GES, Gobbo LC, Tavares LB et al (2021) Reactivity of aliphatic and phenolic hydroxyl groups in kraft lignin towards 4,4’ MDI. Molecules 26(8):2131. https://doi.org/10.3390/molecules26082131

    Article  Google Scholar 

  54. Bertella S, Luterbacher JS (2020) Lignin functionalization for the production of novel materials. Trends Chem 2(5):440–453. https://doi.org/10.1016/j.trechm.2020.03.001

    Article  Google Scholar 

  55. Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromol 6(5):2815–2821. https://doi.org/10.1021/bm050288q

    Article  Google Scholar 

  56. Xu T, Song Q, Liu K, Liu H, Pan J, Liu W et al (2023) Nanocellulose-assisted construction of multifunctional Mxene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 15(1):98. https://doi.org/10.1007/s40820-023-01073-x

  57. Li W, Sun H, Wang G, Sui W, Dai L, Si C (2023) Lignin as a green and multifunctional alternative to phenol for resin synthesis. Green Chem 25(6):2241-2261. https://doi.org/10.1039/D2GC04319J

  58. Zhou H, Mao Y, Zheng Y, Liu T, Yang Y, Si C et al (2023) Complete conversion of xylose-extracted corncob residues to bioplastic in a green and low carbon footprint way. Chem Eng J 471:144572. https://doi.org/10.1016/j.cej.2023.144572

  59. Duan Y, Yang H, Liu K, Xu T, Chen J, Xie H et al (2023) Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv Compos Hybrid Ma 6(3):123. https://doi.org/10.1007/s42114-023-00700-w

  60. Liu R, Dai L, Xu C, Wang K, Zheng C, Si C (2020) Lignin-based micro- and nanomaterials and their composites in biomedical applications. ChemSusChem 13(17):4266-4283. https://doi.org/10.1002/cssc.202000783

  61. Liu K, Du H, Liu W, Liu H, Zhang M, Xu T et al (2022) Cellulose Nanomaterials for Oil Exploration Applications. Polym Rev 62(3):585-625. https://doi.org/10.1080/15583724.2021.2007121

  62. Liu K, Du H, Zheng T, Liu H, Zhang M, Zhang R et al (2021) Recent advances in cellulose and its derivatives for oilfield applications. Carbohyd Polym 259:117740. https://doi.org/10.1016/j.carbpol.2021.117740

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 32171717, 32071720, 32271814), Natural Science Foundation of Tianjin (No. 22JCYBJC01560), the financial support from the China Scholarship Council (No. 202008120139) and the Walter Ahlström Foundation.

Author information

Authors and Affiliations

Authors

Contributions

CX supervised the project. JX and AP designed the experiments. JX performed the experiments and data analysis and wrote the original draft. AP, RL, and LW assisted in the experiments and data analysis. JH assisted in SEC/MALS/RI analysis. All authors discussed experiments and results. CS co-supervised the work and LD reviewed and edited, guiding the manuscript. All authors have given approval for the final version of the manuscript.

Corresponding authors

Correspondence to Lin Dai, Chunlin Xu or Chuanling Si.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10865 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Liu, R., Wang, L. et al. Towards a deep understanding of the biomass fractionation in respect of lignin nanoparticle formation. Adv Compos Hybrid Mater 6, 214 (2023). https://doi.org/10.1007/s42114-023-00797-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00797-z

Keywords

Navigation