Skip to main content

Advertisement

Log in

Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@silver nanoparticles electrospun membrane strain sensors by multi-conductive network

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Highly stretchable strain sensors with high sensitivity, wide sensing range, and high durability have broader application prospects in the fields of wearable sensors, electronic skin, and soft robots. However, it is still challenging to fabricate strain sensors with high sensitivity, wide working range, excellent durability, and antibacterial properties. Herein, a highly stretchable and porous thermoplastic polyurethane/carbon nanotube@silver nanoparticles (TPU/CNT@AgNPs) strain sensor was facilely prepared by electrospinning combined with dip coating CNT and reduction of AgNO3. The TPU/CNT@AgNPs strain sensor exhibited high sensitivity (the maximum gauge factor of 930), favorable conductivity (539.7 S m−1), wide sensing range (0.1 ~ 500% strain), a fast response time (100 ms at 1% strain), high dynamic response performance (2400 mm/min), air permeability, and antibacterial activity, due to the synergetic effect of the multi-conductive network between CNT and AgNPs. Benefiting from the in situ generated AgNPs and the π–π interaction between the benzene ring structure of TPU and CNT, the TPU/CNT@AgNPs strain sensor exhibited excellent durability (1400 cycles for 200% strain) and could work even after being immersed in harsh conditions (acidic and alkaline solution). Besides, the strain sensor can be successfully employed in monitoring human motion from tiny pulse beats to large bending movements of fingers, wrists, and knees. This work provides a feasible approach to preparing a strain sensor with outstanding overall performance, which has a perspective and alluring application in the realm of wearable electronics.

Graphical Abstract

Highly stretchable TPU/CNT@AgNPs strain sensor with high sensitivity was prepared by dipping CNT and AgNPs reduction on electrospun TPU mat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The TPU/3CNT@AgNPs-4 stain sensor is breathable, and when worn on the skin, it can provide a breathable environment for the skin and improve comfort. This is just a subjective guess without actual measurement.

References

  1. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160. https://doi.org/10.1016/j.jmst.2022.03.012

    Article  Google Scholar 

  2. Wang W, Yi L, Zheng Y, Lu J, Jiang A, Wang D (2023) Photochromic and mechanochromic cotton fabric for flexible rewritable media based on acrylate latex with spiropyran cross-linker. Compos Commun 37:101455. https://doi.org/10.1016/j.coco.2022.101455

  3. Zhu H, Hu W, Zhao S, Zhang X, Pei L, Zhao G, Wang Z (2020) Flexible and thermally stable superhydrophobic surface with excellent anti-corrosion behavior. J Mater Sci 55(5):2215–2225. https://doi.org/10.1007/s10853-019-04050-1

    Article  CAS  Google Scholar 

  4. Lin M, Zheng Z, Yang L, Luo M, Fu L, Lin B, Xu C (2022) A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv Mater 34(1):2107309. https://doi.org/10.1002/adma.202107309

    Article  CAS  Google Scholar 

  5. Wu W, Ren Y, Jiang T, Hou L, Zhou J, Jiang H (2022) Anti-drying, transparent, ion-conducting, and tough organohydrogels for wearable multifunctional human–machine interfaces. Chem Eng J 430:132635. https://doi.org/10.1016/j.cej.2021.132635

  6. Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J (2022) Electronic textiles for wearable point-of-care systems. Chem Rev 122(3):3259–3291. https://doi.org/10.1021/acs.chemrev.1c00502

    Article  CAS  Google Scholar 

  7. Zhang X, Wang Y, Gao X, Ji Y, Qian F, Fan J, Wang H, Qiu L, Li W, Yang H (2021) High-temperature and flexible piezoelectric sensors for lamb-wave-based structural health monitoring. ACS Appl Mater Interfaces 13(40):47764–47772. https://doi.org/10.1021/acsami.1c13704

    Article  CAS  Google Scholar 

  8. Xu Z, Wan X, Mo X, Lin S, Chen S, Chen J, Pan Y, Zhang H, Jin H, Duan J, Huang L, Huang L-B, Xie J, Yi F, Hu B, Zhou J (2021) Electrostatic assembly of laminated transparent piezoelectrets for epidermal and implantable electronics. Nano Energy 89:106450. https://doi.org/10.1016/j.nanoen.2021.106450

  9. Ha KH, Zhang W, Jang H, Kang S, Wang L, Tan P, Hwang H, Lu N (2021) Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv Mater 33(48):2103320. https://doi.org/10.1002/adma.202103320

    Article  CAS  Google Scholar 

  10. Hwang J, Kim Y, Yang H, Oh JH (2021) Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor. Compos Part B: Eng 211:108607. https://doi.org/10.1016/j.compositesb.2021.108607

  11. Xie W, Yao F, Gu H, Du A, Lei Q, Naik N, Guo Z (2022) Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv Compos Hybrid Mater 5(2):1003–1016. https://doi.org/10.1007/s42114-021-00413-y

    Article  CAS  Google Scholar 

  12. Ji X, Zhong Y, Li C, Chu J, Wang H, Xing Z, Niu T, Zhang Z, Du A (2021) Nanoporous carbon aerogels for laser-printed wearable sensors. ACS Appl Nano Mater 4(7):6796–6804. https://doi.org/10.1021/acsanm.1c00858

    Article  CAS  Google Scholar 

  13. Chen A, Wang C, Abu Ali OA, Mahmoud SF, Shi Y, Ji Y, Algadi H, El-Bahy SM, Huang M, Guo Z, Cui D, Wei H (2022) MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications. Compos Part A: Appl S 163:107174. https://doi.org/10.1016/j.compositesa.2022.107174

  14. Kong D, El-Bahy ZM, Algadi H, Li T, El-Bahy SM, Nassan MA, Li J, Faheim AA, Li A, Xu C, Huang M, Cui D, Wei H (2022) Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv Compos Hybrid Mater 5(3):1976–1987. https://doi.org/10.1007/s42114-022-00531-1

    Article  CAS  Google Scholar 

  15. Wu Y, Wu J, Lin Y, Liu J, Pan X, He X, Bi K, Lei M (2022) Melamine sponge skeleton loaded organic conductors for mechanical sensors with high sensitivity and high resolution. Adv Compos Hybrid Mater 6(1):4. https://doi.org/10.1007/s42114-022-00581-5

    Article  CAS  Google Scholar 

  16. Chang X, Chen L, Chen J, Zhu Y, Guo Z (2021) Advances in transparent and stretchable strain sensors. Adv Compos Hybrid Mater 4(3):435–450. https://doi.org/10.1007/s42114-021-00292-3

    Article  Google Scholar 

  17. Hu M, Gao Y, Jiang Y, Zeng H, Zeng S, Zhu M, Xu G, Sun L (2021) High-performance strain sensors based on bilayer carbon black/PDMS hybrids. Adv Compos Hybrid Mater 4(3):514–520. https://doi.org/10.1007/s42114-021-00226-z

    Article  CAS  Google Scholar 

  18. Mishra S, Mohanty S, Ramadoss A (2022) Functionality of flexible pressure sensors in cardiovascular health monitoring: a review. ACS Sens 7(9):2495–2520. https://doi.org/10.1021/acssensors.2c00942

    Article  CAS  Google Scholar 

  19. Cao M, Su J, Fan S, Qiu H, Su D, Li L (2021) Wearable piezoresistive pressure sensors based on 3D graphene. Chem Eng J 406:126777. https://doi.org/10.1016/j.cej.2020.126777

  20. Zhao Y, Ren M, Shang Y, Li J, Wang S, Zhai W, Zheng G, Dai K, Liu C, Shen C (2020) Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins. Compos Sci Technol 200:108448. https://doi.org/10.1016/j.compscitech.2020.108448

  21. Tian G, Zhan L, Deng J, Liu H, Li J, Ma J, Jin X, Ke Q, Huang C (2021) ACS Appl Mater Interfaces Coating of multi-wall carbon nanotubes (MWCNTs) on three-dimensional, bicomponent nonwovens as wearable and high-performance piezoresistive sensors. Chem Eng J 425:130682. https://doi.org/10.1016/j.cej.2021.130682

  22. Hu X, Yang F, Wu M, Sui Y, Guo D, Li M, Kang Z, Sun J, Liu J (2021) A super-stretchable and highly sensitive carbon nanotube capacitive strain sensor for wearable applications and soft robotics. Adv Mater Technol 7(3):2100769. https://doi.org/10.1002/admt.202100769

    Article  CAS  Google Scholar 

  23. Duan L, D'Hooge DR, Cardon L (2020) Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog Mater Sci 114:100617. https://doi.org/10.1016/j.pmatsci.2019.100617

  24. Wang H, Peng X, Liu F, Song X, Wang H, Geng L, Huang A (2022) Facile preparation of super lightweight and highly elastic thermoplastic polyurethane bead blend foam with microporous segregated network structure for good interfacial adhesion. J Supercrit Fluid 184:105568. https://doi.org/10.1016/j.supflu.2022.105568

  25. Li Q, Yin R, Zhang D, Liu H, Chen X, Zheng Y, Guo Z, Liu C, Shen C (2020) Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J Mater Chem A 8(40):21131–21141. https://doi.org/10.1039/D0TA07832H

    Article  CAS  Google Scholar 

  26. Dong H, Sun J, Liu X, Jiang X, Lu S (2022) Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl Mater Interfaces 14(13):15504–15516. https://doi.org/10.1021/acsami.1c23567

    Article  CAS  Google Scholar 

  27. Yang J, Cui N, Lu J, Han D, Shen J, Zhang Z, Qin L, Zhou B, Du A (2022) A facile and versatile post-treatment method to efficiently functionalize 3D-printed carbon aerogels via introducing tailored metal elements. ACS Appl Energy Mater 5(10):11970–11976. https://doi.org/10.1021/acsaem.2c02481

    Article  CAS  Google Scholar 

  28. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Xu BB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H, Du W, Guo Z, Hou C (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  Google Scholar 

  29. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu BB, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  Google Scholar 

  30. Mu Q, Liu R, Kimura H, Li J, Jiang H, Zhang X, Yu Z, Sun X, Algadi H, Guo Z, Du W, Hou C (2022) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6(1):23. https://doi.org/10.1007/s42114-022-00607-y

    Article  CAS  Google Scholar 

  31. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5(4):3146–3157. https://doi.org/10.1007/s42114-022-00556-6

    Article  CAS  Google Scholar 

  32. Lü X, Yu T, Meng F, Bao W (2021) Wide-range and high-stability flexible conductive graphene/thermoplastic polyurethane foam for piezoresistive sensor applications. Adv Mater Technol 6(10):2100248. https://doi.org/10.1002/admt.202100248

    Article  CAS  Google Scholar 

  33. Chen Q, Gao Q, Wang X, Schubert DW, Liu X (2022) Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine /MXene foam for piezoresistive sensors and motion monitoring. Compos Part A: Appl S 155:106838. https://doi.org/10.1016/j.compositesa.2022.106838

  34. Huang A, Liu F, Cui Z, Wang H, Song X, Geng L, Wang H, Peng X (2021) Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering. Compos Sci Technol 214:108980. https://doi.org/10.1016/j.compscitech.2021.108980

  35. Wang M, Ma C, Uzabakiriho PC, Chen X, Chen Z, Cheng Y, Wang Z, Zhao G (2021) Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano 15(12):19364–19376. https://doi.org/10.1021/acsnano.1c05762

    Article  CAS  Google Scholar 

  36. Ren M, Zhou Y, Wang Y, Zheng G, Dai K, Liu C, Shen C (2019) Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem Eng J 360:762–777. https://doi.org/10.1016/j.cej.2018.12.025

    Article  CAS  Google Scholar 

  37. Wang X, Xue R, Li M, Guo X, Liu B, Xu W, Wang Z, Liu Y, Wang G (2022) Strain and stress sensing properties of the MWCNT/TPU nanofiber film. Surf Interfaces 32:102132. https://doi.org/10.1016/j.surfin.2022.102132

  38. Tang J, Wu Y, Ma S, Yan T, Pan Z (2022) Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage. Compos Part B: Eng 232:109605. https://doi.org/10.1016/j.compositesb.2021.109605

  39. Wang L, Chen Y, Lin L, Wang H, Huang X, Xue H, Gao J (2019) Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem Eng J 362:89–98. https://doi.org/10.1016/j.cej.2019.01.014

    Article  CAS  Google Scholar 

  40. Wang W, Ma Y, Wang T, Ding K, Zhao W, Jiao L, Shu D, Li C, Hua F, Jiang H, Tong S, Yang S, Ni Y, Cheng B (2022) Double-layered conductive network design of flexible strain sensors for high sensitivity and wide working range. ACS Appl Mater Interfaces 14(32):36611–36621. https://doi.org/10.1021/acsami.2c08285

    Article  CAS  Google Scholar 

  41. Lu L, Wei X, Zhang Y, Zheng G, Dai K, Liu C, Shen C (2017) A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. J Mater Chem C 5(28):7035–7042. https://doi.org/10.1039/c7tc02429k

    Article  CAS  Google Scholar 

  42. Sharma N, Nair NM, Nagasarvari G, Ray D, Swaminathan P (2022) A review of silver nanowire-based composites for flexible electronic applications. Flexible Printed Electron 7(1):014009. https://doi.org/10.1088/2058-8585/ac5214

  43. Shi Y, Jiang J, Ye H, Sheng Y, Zhou Y, Foong SY, Sonne C, Chong WWF, Lam SS, Xie Y, Li J, Ge S (2023) Transforming municipal cotton waste into a multilayer fibre biocomposite with high strength. Environ Res 218:114967. https://doi.org/10.1016/j.envres.2022.114967

  44. Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C, Shen C, Guo Z (2018) Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J Mater Chem C 6(9):2258–2269. https://doi.org/10.1039/c7tc04959e

    Article  CAS  Google Scholar 

  45. Ma J, Wang P, Chen H, Bao S, Chen W, Lu H (2019) Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl Mater Interfaces 11(8):8527–8536. https://doi.org/10.1021/acsami.8b20902

    Article  CAS  Google Scholar 

  46. Wang C, Li X, Gao E, Jian M, Xia K, Wang Q, Xu Z, Ren T, Zhang Y (2016) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28(31):6640–6648. https://doi.org/10.1002/adma.201601572

    Article  CAS  Google Scholar 

  47. Pan W, Wang J, Li YP, Sun XB, Wang JP, Wang XX, Zhang J, You HD, Yu GF, Long YZ (2020) Facile preparation of highly stretchable TPU/Ag nanowire strain sensor with spring-like configuration. Polymers-Basel 12(2):339. https://doi.org/10.3390/polym12020339

    Article  CAS  Google Scholar 

  48. Guo T, Li C, Yang J, Wang P, Yue J, Huang X, Wang J, Tang X-Z (2020) Holey, anti-impact and resilient thermoplastic urethane/carbon nanotubes fabricated by a low-cost “vapor induced phase separation” strategy for the detection of human motions. Compos Part A: Appl S 136:105974. https://doi.org/10.1016/j.compositesa.2020.105974

  49. Li Z-Y, Zhai W, Yu Y-F, Li G-J, Zhan P-F, Xu J-W, Zheng G-Q, Dai K, Liu C-T, Shen C-Y (2020) An ultrasensitive, durable and stretchable strain sensor with crack-wrinkle structure for human motion monitoring. Chin J Polym Sci 39(3):316–326. https://doi.org/10.1007/s10118-021-2500-8

    Article  CAS  Google Scholar 

  50. Li H, Chen J, Chang X, Xu Y, Zhao G, Zhu Y, Li Y (2021) A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. J Mater Chem A 9(3):1795–1802. https://doi.org/10.1039/d0ta10990h

    Article  CAS  Google Scholar 

  51. Mohammed AM, Maddipatla D, Narakathu BB, Chlaihawi AA, Emamian S, Janabi F, Bazuin BJ, Atashbar MZ (2018) Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sensor Actuat A: Phys 274:109–115. https://doi.org/10.1016/j.sna.2018.03.003

    Article  CAS  Google Scholar 

  52. Zhou J, Xu X, Xin Y, Lubineau G (2018) Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv Funct Mater 28(16):1705591. https://doi.org/10.1002/adfm.201705591

    Article  CAS  Google Scholar 

  53. Shi X, Wang H, Xie X, Xue Q, Zhang J, Kang S, Wang C, Liang J, Chen Y (2019) Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “Brick-and-Mortar” architecture. ACS Nano 13(1):649–659. https://doi.org/10.1021/acsnano.8b07805

    Article  CAS  Google Scholar 

  54. Wang Y, Li W, Zhou Y, Jiang L, Ma J, Chen S, Jerrams S, Zhou F (2020) Fabrication of high-performance wearable strain sensors by using CNTs-coated electrospun polyurethane nanofibers. J Mater Sci 55(26):12592–12606. https://doi.org/10.1007/s10853-020-04852-8

    Article  CAS  Google Scholar 

  55. Wang H, Wang M, Xu X, Gao P, Xu Z, Zhang Q, Li H, Yan A, Kao RY, Sun H (2021) Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat Commun 12(1):3331. https://doi.org/10.1038/s41467-021-23659-y

    Article  CAS  Google Scholar 

  56. Mao C, Xiang Y, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Wang X, Chu PK, Wu S (2017) Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano 11(9):9010–9021. https://doi.org/10.1021/acsnano.7b03513

    Article  CAS  Google Scholar 

  57. Zhao J, Haowei M, Saberi A, Heydari Z, Baltatu MS (2022) Carbon nanotube (CNT) encapsulated magnesium-based nanocomposites to improve mechanical, degradation and antibacterial performances for biomedical device applications. Coatings 12(10):1589. https://doi.org/10.3390/coatings12101589

    Article  CAS  Google Scholar 

  58. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, Shi SQ, Nie X, Qiu Y, Li D, Wu Q, Tsang DCW, Peng W, Sonne C (2020) Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl Mater Interfaces 12(27):30824–30832. https://doi.org/10.1021/acsami.0c07448

    Article  CAS  Google Scholar 

  59. Ge S, Ouyang H, Ye H, Shi Y, Sheng Y, Peng W (2023) High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv Compos Hybrid Mater 6(1):44. https://doi.org/10.1007/s42114-023-00628-1

    Article  CAS  Google Scholar 

  60. Cheng H, Wang B, Yang K, Yang YQ, Wang C (2021) A high-performance piezoresistive sensor based on poly (styrene-co-methacrylic acid)@polypyrrole microspheres/graphene-decorated TPU electrospun membrane for human motion detection. Chem Eng J 426:131152. https://doi.org/10.1016/j.cej.2021.131152

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 52203034 and 52273032), Natural Science Foundation of Fujian Province (2020J05190 and 2020J02007), Major Science and Technology Project of Fuzhou City (2021-ZD-285), and Scientific Research Foundation of Fujian University of Technology (GY-Z19048, GY-Z21014, and GY-Z17073).

Author information

Authors and Affiliations

Authors

Contributions

An Huang: investigation, resources, validation, and writing—review and editing. Yu Guo: investigation, data curation, validation, and writing—original draft. Yiwei Zhu: methodology and data curation. Tingjie Chen: methodology and formal analysis. Zhenyu Yang: investigation and software. Yao Song: investigation and software. Priyanka Wasnik: writing—original draft and format checking. Handong Li: data analysis. Shuqiang Peng: conceptualization, methodology, and writing—review and editing. Zhanhu Guo: supervision and writing—original draft. Xiangfang Peng: supervision, methodology, conceptualization, and funding acquisition.

Corresponding authors

Correspondence to Shuqiang Peng, Zhanhu Guo or Xiangfang Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 25757 KB)

Supplementary file2 (MP4 9016 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A., Guo, Y., Zhu, Y. et al. Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@silver nanoparticles electrospun membrane strain sensors by multi-conductive network. Adv Compos Hybrid Mater 6, 101 (2023). https://doi.org/10.1007/s42114-023-00684-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00684-7

Keywords

Navigation