Skip to main content
Log in

Melamine sponge skeleton loaded organic conductors for mechanical sensors with high sensitivity and high resolution

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In recent years, due to the development of flexible electronics, flexible sensors have been widely concerned and applied in intelligent robots, brain-computer interfaces, and wearable electronic devices. In this paper, we propose a low-cost and high-efficiency sensor component preparation method. The sensor component tetrathiafulvalene-tetracyanoquinodimethane/melamine sponge (TTMS) takes a melamine sponge as a flexible substrate. And the sponge is metallized with the tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) which is an organic conducting molecule to construct a conductive pathway. The physical load approach is used to ensure the advantages of low cost and efficient manufacturing. TTMS can withstand 8000 compression cycles which exhibits its good mechanical stability. And 1000 cycles of cyclic voltammetry scanning proved it also had good electrical stability. TTMS can distinguish pressure changes of 100 Pa and respond quickly to pressure application and release. The TTMS can be assembled to form an array of sensors that can distinguish the position and intensity of pressure. Therefore, the excellent performance of the sensor is expected to promote the commercial application of the piezoresistive sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data sharing is not applicable to this article.

References

  1. Das HS, Roymahapatra G, Nandi PK, Das R (2021) Study the effect of zno/cu/zno multilayer structure by rf magnetron sputtering for flexible display applications. ES Mater Manuf 13:50–56

    CAS  Google Scholar 

  2. Cheng H, Pan Y, Chen Q, Che R, Zheng G, Liu C, Shen C, Liu X (2021) Ultrathin flexible poly(vinylidene fluoride)/Mxene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybri Mater 4(3):505–513

    Article  CAS  Google Scholar 

  3. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160

    Article  Google Scholar 

  4. Lai C, Wang Y, Fu L, Song H, Liu B, Pan D, Guo Z, Seok I, Li K, Zhang H, Dong M (2021) Aqueous flexible all-solid-state NiCo-Zn batteries with high capacity based on advanced ion-buffering reservoirs of NiCo2O4. Adv Compos Hybri Mater 5(1):536–546

    Article  Google Scholar 

  5. Wang Y, Yang D, Hessien MM, Du K, Ibrahim MM, Su Y, Mersal GAM, Ma R, El-Bahy SM, Huang M, Yuan Q, Cui B, Hu D (2022) Flexible barium titanate@polydopamine/polyvinylidene fluoride/polymethyl methacrylate nanocomposite films with high performance energy storage. Adv Compos Hybri Mater 5(3):2106–2115

    Article  CAS  Google Scholar 

  6. Li G, Wang L, Lei X, Peng Z, Wan T, Maganti S, Huang M, Murugadoss V, Seok I, Jiang Q, Cui D, Alhadhrami A, Ibrahim MM, Wei H (2022) Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv Compos Hybri Mater 5(2):853–863

    Article  CAS  Google Scholar 

  7. Zhang Y, Yang J, Hou X, Li G, Wang L, Bai N, Cai M, Zhao L, Wang Y, Zhang J, Chen K, Wu X, Yang C, Dai Y, Zhang Z, Guo CF (2022) Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat Commun 13(1):1317

    Article  CAS  Google Scholar 

  8. Lin S, Liu J, Li W, Wang D, Huang Y, Jia C, Li Z, Murtaza M, Wang H, Song J, Liu Z, Huang K, Zu D, Lei M, Hong B, Wu H (2019) A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett 19(10):6853–6861

    Article  CAS  Google Scholar 

  9. Liu J, Lin S, Li W, Zhao Y, Liu D, He Z, Wang D, Lei M, Hong B, Wu H (2022) Ten-hour stable noninvasive brain-computer interface realized by semidry hydrogel-based electrodes. Research 2022:9830457

    Article  CAS  Google Scholar 

  10. Liu J, Chen E, Wu Y, Yang H, Huang K, Chang G, Pan X, Huang K, He Z, Lei M (2022) Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection. Adv Compos Hybri Mater 5(2):1196–1205

    Article  CAS  Google Scholar 

  11. Gao J, Fan Y, Zhang Q, Luo L, Hu X, Li Y, Song J, Jiang H, Gao X, Zheng L, Zhao W, Wang Z, Ai W, Wei Y, Lu Q, Xu M, Wang Y, Song W, Wang X, Huang W (2022) Ultra-robust and extensible fibrous mechanical sensors for wearable smart healthcare. Adv Mater 34(20):2107511

    Article  CAS  Google Scholar 

  12. Huang K, Liu J, Lin S, Wu Y, Chen E, He Z, Lei M (2021) Flexible silver nanowire dry electrodes for long-term electrocardiographic monitoring. Adv Compos Hybrid Mater 5:220–228

    Article  Google Scholar 

  13. Takei K, Honda W, Harada S, Arie T, Akita S (2015) Toward flexible and wearable human-interactive health-monitoring devices. Adv Healthc Mater 4(4):487–500

    Article  CAS  Google Scholar 

  14. Huang K, Wu Y, Liu J, Chang G, Pan X, Weng X, Wang Y, Lei M (2022) A double-layer CNTs/PVA hydrogel with high stretchability and compressibility for human motion detection. Eng Sci 17:319–327

    CAS  Google Scholar 

  15. Xu H, Lu YF, Xiang JX, Zhang MK, Zhao YJ, Xie ZY, Gu ZZ (2018) A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 10(4):2090–2098

    Article  CAS  Google Scholar 

  16. Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z (2014) An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun 5:3002

    Article  Google Scholar 

  17. Jiang N, Hu D, Xu Y, Chen J, Chang X, Zhu Y, Li Y, Guo Z (2021) Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing. Adv Compos Hybrid Mater 4(3):574–583

    Article  CAS  Google Scholar 

  18. Wu H, Xie Y, Ma Y, Zhang B, Xia B, Zhang P, Qian W, He D, Zhang X, Li BW, Nan CW (2022) Aqueous Mxene/Xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor. Small 18(119):2107087

    Article  CAS  Google Scholar 

  19. Xue B, Xie H, Zhao J, Zheng J, Xu C (2022) Flexible piezoresistive pressure sensor based on electrospun rough polyurethane nanofibers film for human motion monitoring. Nanomaterials 12(4):723

    Article  CAS  Google Scholar 

  20. Wei H, Li A, Kong D, Li Z, Cui D, Li T, Dong B, Guo Z (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4(1):86–95

    Article  CAS  Google Scholar 

  21. Prabhu NN, Ch RJ, Rajendra BV, George G, Mourad AHI, Shivamurthy B (2022) Electrospun ZnO nanofiber based resistive gas/vapor sensors -a review. Eng Sci 19:59–82

    CAS  Google Scholar 

  22. Li K, Wei H, Liu W, Meng H, Zhang P, Yan C (2018) 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing. Nanotechnology 29(18):185501

    Article  Google Scholar 

  23. Kang M, Kim J, Jang B, Chae Y, Kim JH, Ahn JH (2017) Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 11(8):7950–7957

    Article  CAS  Google Scholar 

  24. He L, Lu J, Han C, Liu X, Liu J, Zhang C (2022) Electrohydrodynamic pulling consolidated high-efficiency 3D printing to architect unusual self-polarized β-PVDF arrays for advanced piezoelectric sensing. Small 18(15):2200114

    Article  CAS  Google Scholar 

  25. Wang H, Li Y, Wang X, Liu Z, Ahmed MF, Zeng C (2021) Preparation and characterization of piezoelectrici foams based on cyclic olefin copolymer. Eng Sci 16:203–210

    CAS  Google Scholar 

  26. Yi Z, Liu Z, Li W, Ruan T, Chen X, Liu J, Yang B, Zhang W (2022) Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv Mater 34(16):2110291

    Article  CAS  Google Scholar 

  27. Lu J, Hu S, Li W, Wang X, Mo X, Gong X, Liu H, Luo W, Dong W, Sima C, Wang Y, Yang G, Luo JT, Jiang S, Shi Z, Zhang G (2022) A biodegradable and recyclable piezoelectric sensor based on a molecular ferroelectric embedded in a bacterial cellulose hydrogel. ACS Nano 16(3):3744–3755

    Article  CAS  Google Scholar 

  28. Su YF, Han G, Kong Z, Nantung T, Lu N (2020) Embeddable piezoelectric sensors for strength gain monitoring of cementitious materials: The influence of coating materials. Eng Sci 11:66–75

    CAS  Google Scholar 

  29. Li GY, Li J, Li ZJ, Zhang YP, Zhang X, Wang ZJ, Han WP, Sun B, Long YZ, Zhang HD (2022) Hierarchical pvdf-hfp/zno composite nanofiber-based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv Compos Hybri Mater 5(2):766–775

    Article  CAS  Google Scholar 

  30. Ha KH, Huh H, Li Z, Lu N (2022) Soft capacitive pressure sensors: trends, challenges, and perspectives. ACS Nano 16(3):3442–3448

    Article  CAS  Google Scholar 

  31. Yu Q, Ge R, Wen J, Du T, Zhai J, Liu S, Wang L, Qin Y (2022) Highly sensitive strain sensors based on piezotronic tunneling junction. Nat Commun 13(1):778

    Article  CAS  Google Scholar 

  32. Hammock ML, Chortos A, Tee BC, Tok JB, Bao Z (2013) 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 25(42):5997–6038

    Article  CAS  Google Scholar 

  33. Wu Y, Liu J, Lin S, Huang K, Chen E, Huang K, Lei M (2022) New pressure matrix array sensor composed of flexible mechanical sensor elements. Eng Sci 18:105–112

    CAS  Google Scholar 

  34. Liu M, Liu W, Hou H, Ouyang Y, Lei M, Wei Z (2020) Silver nanowires with different concentration for Q-switched fiber lasers. Opt Mater Express 10(1):187–197

    Article  Google Scholar 

  35. Mu C, Song Y, Huang W, Ran A, Sun R, Xie W, Zhang H (2018) Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv Funct Mater 28(18):1707503

    Article  Google Scholar 

  36. Shi J, Li X, Cheng H, Liu Z, Zhao L, Yang T, Dai Z, Cheng Z, Shi E, Yang L, Zhang Z, Cao A, Zhu H, Fang Y (2016) Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Funct Mater 26(13):2078–2084

    Article  CAS  Google Scholar 

  37. Trung TQ, Le HS, Dang TML, Ju S, Park SY, Lee NE (2018) Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. Adv Healthc Mater 7(12):1800074

    Article  Google Scholar 

  38. Wang XM, Tao LQ, Yuan M, Wang ZP, Yu J, Xie D, Luo F, Chen X, Wong C (2021) Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat Commun 12(1):1776

    Article  Google Scholar 

  39. Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z (2019) Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl Mater Interfaces 11(7):6685–6704

    Article  CAS  Google Scholar 

  40. Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Wang J, Gao Y (2020) Bioinspired microspines for a high-performance spray Ti3C2Tx mxene-based piezoresistive sensor. ACS Nano 14(2):2145–2155

    Article  CAS  Google Scholar 

  41. Wei J, Chu X, Sun XY, Xu K, Deng HX, Chen J, Wei Z, Lei M (2019) Machine learning in materials science InfoMat 1(3):338–358

    CAS  Google Scholar 

  42. Wu Y, Huang K, Weng X, Wang R, Du P, Liu J, Lin S, Huang K, Yang H, Lei M (2022) PVB coating efficiently improves the high stability of EMI shielding fabric with Cu/Ni. Adv Compos Hybri Mater 5(1):71–82

    Article  CAS  Google Scholar 

  43. Paulsen BD, Tybrandt K, Stavrinidou E, Rivnay J (2020) Organic mixed ionic-electronic conductors. Nat Mater 19(1):13–26

    Article  CAS  Google Scholar 

  44. Saito G, Yoshida Y (2012) Frontiers of organic conductors and superconductors. Top Curr Chem 312:67–126

    Article  CAS  Google Scholar 

  45. Misaki Y (2009) Tetrathiapentalene-based organic conductors. Sci Technol Adv Mater 10(2):024301

    Article  Google Scholar 

  46. Chen J, Zhu Y, Guo Z, Nasibulin AG (2020) Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng Sci 12:13–22

    CAS  Google Scholar 

  47. Akamatu H, Inokuchi H, Matsunaga Y (1954) Electrical conductivity of the perylene-bromine complex. Nature 173(4395):168–169

    Article  Google Scholar 

  48. Yamada H, Yamashita M, Hayashi H, Suzuki M, Aratani N (2018) Semiconducting Pi-extended tetrathiafulvalene derivatives. Chemistry 24(70):18601–18612

    Article  CAS  Google Scholar 

  49. Lin S, Liu J, Wang Q, Zu D, Wang H, Wu F, Bai X, Song J, Liu Z, Li Z, Huang K, Li B, Lei M, Wu H (2020) Highly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shielding. Adv Mater Technol 5(2):1900761

    Article  CAS  Google Scholar 

  50. Gal-Oz R, Patil N, Khalfin R, Cohen Y, Zussman E (2013) Conductive PVDF-HFP nanofibers with embedded TTF-TCNQ charge transfer complex. ACS Appl Mater Interfaces 5(13):6066–6072

    Article  CAS  Google Scholar 

  51. Liu J, Lin S, Huang K, Jia C, Wang Q, Li Z, Song J, Liu Z, Wang H, Lei M, Wu H (2020) A large-area agnw-modified textile with high-performance electromagnetic interference shielding. NPJ Flex Electron 4(1):10

    Article  CAS  Google Scholar 

  52. Bloch AN, Ferraris JP, Cowan DO, Poehler TO (1973) Microwave conductivities of the organic conductors TTF-TCNQ and ATTF-TCNQ. Solid State Commun 13(7):753–757

    Article  CAS  Google Scholar 

  53. Park C, Atalla V, Smith S, Yoon M (2017) Understanding the charge transfer at the interface of electron donors and acceptors: TTF-TCNQ as an example. ACS Appl Mater Interfaces 9(32):27266–27272

    Article  CAS  Google Scholar 

  54. Guan YS, Hu Y, Zhang H, Wu G, Yan H, Ren S (2019) A highly conductive, transparent molecular charge-transfer salt with reversible lithiation. Chem Commun 55(50):7179–7182

    Article  CAS  Google Scholar 

  55. Lin S, Wang H, Wu F, Wang Q, Bai X, Zu D, Song J, Wang D, Liu Z, Li Z, Tao N, Huang K, Lei M, Li B, Wu H (2019) Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. NPJ Flex Electron 3(1):6

    Article  Google Scholar 

  56. Lin S, Bai X, Wang H, Wang H, Song J, Huang K, Wang C, Wang N, Li B, Lei M, Wu H (2017) Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows. Adv Mater 29(41):1703238

    Article  Google Scholar 

  57. Lin S, Wang H, Zhang X, Wang D, Zu D, Song J, Liu Z, Huang Y, Huang K, Tao N, Li Z, Bai X, Li B, Lei M, Yu Z, Wu H (2019) Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. Nano Energy 62:111–116

    Article  CAS  Google Scholar 

  58. Kong L, Gao Z, Li X, Gao G (2021) An amylopectin-enabled skin-mounted hydrogel wearable sensor. J Mater Chem B 9(4):1082–1088

    Article  CAS  Google Scholar 

  59. Gao Y, Peng J, Zhou M, Yang Y, Wang X, Wang J, Cao Y, Wang W, Wu D (2020) A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. J Mater Chem B 8(48):11010–11020

    Article  CAS  Google Scholar 

  60. Goudappagouda CS, Krishnamoorthy K, Gosavi SW, Babu SS (2015) Seeded on-surface supramolecular growth for large area conductive donor-acceptor assembly. Chem Commun 51(52):10439–10442

    Article  CAS  Google Scholar 

  61. Wu L, Wu F, Sun Q, Shi J, Xie A, Zhu X, Dong W (2021) A TTF-TCNQ complex: An organic charge-transfer system with extraordinary electromagnetic response behavior. J Mater Chem C 9(9):3316–3323

    Article  CAS  Google Scholar 

  62. Lindquist JM, Hemminger JC (1988) High-resolution core level photoelectron spectra of solid TCNQ: determination of molecular orbital spatial distribution from localized shake-up features. J Phys Chem 92(6):1394–1396

    Article  CAS  Google Scholar 

  63. Bellitto C, Bonamico M, Fares V, Imperatori P, Patrizio S (1989) Tetrathiafulvalenium salts of planar PtII, PdII, and CuII 1,2-dithio-oxalato-S, S′ anions. Synthesis, chemistry and molecular structures of bis(tetrathiafulvalenium) bis(1,2-dithio-oxalato-S, S′)palladate(II), [ttf]2[Pd(S2C2O2)2], and of bis(tetrathiafulvalenium)tetrathiafulvalene bis(1,2-dithio-oxalato-S, S′)platinate(II), [ttf]3[Pt(S2C2O2)2]. J Chem Soc Dalton 4:719–727

    Article  Google Scholar 

  64. Kim YI, Hatfield WE (1991) Electrical, magnetic and spectroscopic properties of tetrathiafulvalene charge transfer compounds with iron, ruthenium, rhodium and iridium halides. Inorg Chim Acta 188(1):15–24

    Article  CAS  Google Scholar 

  65. Tillman N, Ulman A, Elman JF (1990) A novel self-assembling monolayer film containing a sulfone-substituted aromatic group. Langmuir 6(9):1512–1518

    Article  CAS  Google Scholar 

  66. Riga J, Snauwaert P, De Pryck A, Lazzaroni R, Boutique JP, Verbist JJ, Brédas JL, André JM, Taliani C (1987) Electronic structure of sulphur-containing conducting polymers. Synthetic Met 21(1):223–228

    Article  CAS  Google Scholar 

  67. Döring M, Uhlig E, Nefedov VI, Salyn IV (1988) Komplexbildung mit sulfonamidsubstituierten thionoliganden. Z Anorg Allg Chem 563(1):105–115

    Article  Google Scholar 

  68. He Y, Zhou M, Mahmoud MHH, Lu X, He G, Zhang L, Huang M, Elnaggar AY, Lei Q, Liu H, Liu C, Azab IHE (2022) Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv Compos Hybri Mater 5:1939–1950

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported financially by the Fundamental Research Funds for the Central Universities (2021XD-A04-2), Zhejiang Province Public Welfare Technology Application Research Project of China (Grant No. LGG22E010003), the National Natural Science Foundation of China (Nos. 61874014 and 61874013), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, P.R. China), and BUPT Excellent Ph.D. Students Foundation (CX2022237).

Author information

Authors and Affiliations

Authors

Contributions

Wu Yufeng was responsible for all the experimental and paper writing parts. Wu Jianbo and Lin Yan provided the characterization test equipment. He Xian helped to complete the characterization of SEM and XRD. Liu Junchen and Pan Xiaolong helped to revise the writing of the paper. Lei Ming and Bi Ke provided experimental ideas, experimental direction, and financial support.

Corresponding authors

Correspondence to Jianbo Wu, Xiaolong Pan or Ke Bi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31858 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wu, J., Lin, Y. et al. Melamine sponge skeleton loaded organic conductors for mechanical sensors with high sensitivity and high resolution. Adv Compos Hybrid Mater 6, 4 (2023). https://doi.org/10.1007/s42114-022-00581-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00581-5

Keywords

Navigation