Skip to main content

Advertisement

Log in

Biomass porous carbon/polyethylene glycol shape-stable phase change composites for multi-source driven thermal energy conversion and storage

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Limitations of leakage and simplicity of functionality of phase change composite (PCC) gravely impede its wide application and propulsion especially in the fields of energy storage. In this paper, carbonized delignified basha wood (CDW) covered with polyvinyl alcohol (PVA) is applied as a matrix of PCC, a series of polyethylene glycol (PEG)-based shape-stable phase change composites (SSPCCs) with superior mechanical properties, and multiple energy conversion abilities were fabricated via simple chemical treatment and physical impregnation. The obtained SSPCCs with PVA demonstrate high phase change enthalpy (152.9 J/g for melting enthalpy and 147.2 J/g for crystallization enthalpy) and achieve 3.84 times increase in pressure resistance compared to the CDW simultaneously. Moreover, it exhibits an 86.3% PEG loading ratio and 97.7% relative enthalpy efficiency which empowers SSPCCs with outstanding thermal energy storage and thermal conversion capabilities including photo-to-thermal conversion and electro-to-thermal conversion. Besides, the addition of Fe3O4 nanoparticles endows SSPCCs with excellent magnetic-to-thermal conversion performance, which broadens the path of energy transformation. These findings could guide the fabrication of high-performance and sustainable materials in the fields of energy storage and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nieuwenhuijsen MJ (2020) Urban and transport planning pathways to carbon neutral, liveable and healthy cities; a review of the current evidence. Environ Int 140:105661. https://doi.org/10.1016/j.envint.2020.105661

    Article  Google Scholar 

  2. Lian M, Huang Y, Liu Y, Jiang D, Wu Z, Li B, Xu Q, Murugadoss V, Jiang Q, Huang M, Guo Z (2022) An overview of regenerable wood-based composites: preparation and applications for flame retardancy, enhanced mechanical properties, biomimicry, and transparency energy saving. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00475-6

    Article  Google Scholar 

  3. Nazir H, Batool M, Bolivar Osorio FJ, Isaza-Ruiz M, Xu X, Vignarooban K, Phelan P, Inamuddin KAM (2019) Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf 129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

    Article  CAS  Google Scholar 

  4. Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5(2):1537–1547. https://doi.org/10.1007/s42114-022-00430-5

    Article  CAS  Google Scholar 

  5. Zhang N, Yuan Y, Cao X, Du Y, Zhang Z, Gui Y (2018) Latent heat thermal energy storage systems with solid–liquid phase change materials: a review. Adv Eng Mater 20(6):1700753. https://doi.org/10.1002/adem.201700753

    Article  CAS  Google Scholar 

  6. Xiao Y-y, He Y-j, Wang R-q, Lei Y-z, Yang J-h, Qi X-d, Wang Y (2022) Mussel-inspired strategy to construct 3D silver nanoparticle network in flexible phase change composites with excellent thermal energy management and electromagnetic interference shielding capabilities. Compos Pt B-Eng 239:109962. https://doi.org/10.1016/j.compositesb.2022.109962

    Article  CAS  Google Scholar 

  7. Lu X, Liu H, Murugadoss V, Seok I, Huang J, Ryu J E, Guo Z (2020) Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Eng Sci 9 (March 2020) 25–34. https://doi.org/10.30919/es8d901.

  8. Wei D, Weng M, Mahmoud MHH, Elnaggar AY, Azab IHE, Sheng X, Huang M, El-Bahy ZM, Huang J (2022) Development of novel biomass hybrid aerogel supported composite phase change materials with improved light-thermal conversion and thermal energy storage capacity. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00519-x

    Article  Google Scholar 

  9. Shi X, Yazdani MR, Ajdary R, Rojas OJ (2021) Leakage-proof microencapsulation of phase change materials by emulsification with acetylated cellulose nanofibrils. Carbohydr Polym 254:117279. https://doi.org/10.1016/j.carbpol.2020.117279

    Article  CAS  Google Scholar 

  10. Zhang S, Feng D, Shi L, Wang L, Jin Y, Tian L, Li Z, Wang G, Zhao L, Yan Y (2021) A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew Sust Energ Rev 135:110127. https://doi.org/10.1016/j.rser.2020.110127

    Article  CAS  Google Scholar 

  11. Karaipekli A, Sarı A (2010) Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage. J Ind Eng Chem 16(5):767–773. https://doi.org/10.1016/j.jiec.2010.07.003

    Article  CAS  Google Scholar 

  12. Hu X, Zhu C, Wu H, Li X, Lu X, Qu J (2022) Large-scale preparation of flexible phase change composites with synergistically enhanced thermally conductive network for efficient low-grade thermal energy recovery and utilization. Compos Pt A-Appl Sci Manuf 154:106770. https://doi.org/10.1016/j.compositesa.2021.106770

    Article  CAS  Google Scholar 

  13. Zhou Y, Sheng D, Liu X, Lin C, Ji F, Dong L, Xu S, Yang Y (2018) Synthesis and properties of crosslinking halloysite nanotubes/polyurethane-based solid-solid phase change materials. Sol Energy Mater Sol Cells 174:84–93. https://doi.org/10.1016/j.solmat.2017.08.031

    Article  CAS  Google Scholar 

  14. Yuan H, Bai H, Wang Y, Preparation and Characterization of Stearic Acid/SiO2 Nano-encapsulated Phase Change Materials via Sol-gel Method, in: L. Li, D.P. Guillen, N.R. Neelameggham, L. Zhang, J. Zhu, X. Liu, S.N. Basu, N. Haque, T. Wang, D.E. Verhulst, A. Pandey (Eds.), Energy Technology 2016: Carbon Dioxide Management and Other Technologies, Springer International Publishing, Cham, 2016, pp. 99–106. https://doi.org/10.1007/978-3-319-48182-1_12

  15. Zhao Y, Min X, Huang Z, Liu Y, g, Wu X, Fang M, (2018) Honeycomb-like structured biological porous carbon encapsulating PEG: a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy Build 158:1049–1062. https://doi.org/10.1016/j.enbuild.2017.10.078

    Article  Google Scholar 

  16. Yin C, Weng L, Fei Z-X, Shi L-Y, Yang K-K (2022) Form-stable phase change composites based on porous carbon derived from polyacrylonitrile hydrogel. Chem Eng J 431:134206. https://doi.org/10.1016/j.cej.2021.134206

    Article  CAS  Google Scholar 

  17. Zhu C, Lu X, Wu H, Hu X, Li X, Liu S, Qu J-P (2022) Constructing heat conduction path and flexible support skeleton for PEG-based phase change composites through salt template method. Compos Sci Technol 226:109532. https://doi.org/10.1016/j.compscitech.2022.109532

    Article  CAS  Google Scholar 

  18. Li Y, Li Y, Huang X, Zheng H, Lu G, Xi Z, Wang G (2020) Graphene-CoO/PEG composite phase change materials with enhanced solar-to-thermal energy conversion and storage capacity. Compos Sci Technol 195:108197. https://doi.org/10.1016/j.compscitech.2020.108197

    Article  CAS  Google Scholar 

  19. Fang Y, Liu S, Li X, Hu X, Wu H, Lu X, Qu J (2022) Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability. Sol Energy Mater Sol Cells 237:111559. https://doi.org/10.1016/j.solmat.2021.111559

    Article  CAS  Google Scholar 

  20. Gong S, Li X, Sheng M, Liu S, Zheng Y, Wu H, Lu X, Qu J (2021) High thermal conductivity and mechanical strength phase change composite with double supporting skeletons for industrial waste heat recovery. ACS Appl Mater Interfaces 13(39):47174–47184. https://doi.org/10.1021/acsami.1c15670

    Article  CAS  Google Scholar 

  21. Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G (2022) Implantable nerve guidance conduits: material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater 11:57–76. https://doi.org/10.1016/j.bioactmat.2021.09.030

    Article  Google Scholar 

  22. Wu H, Zhu C, Li X, Hu X, Xie H, Lu X, Qu J-P (2022) Layer-by-layer assembly of multifunctional NR/MXene/CNTs composite films with exceptional electromagnetic interference shielding performances and excellent mechanical properties. Macromol Rapid Commun n/a(n/a) 2200387. https://doi.org/10.1002/marc.202200387

  23. Cheng H, Xing L, Zuo Y, Pan Y, Huang M, Alhadhrami A, Ibrahim MM, El-Bahy ZM, Liu C, Shen C, Liu X (2022) Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv Compos Hybrid Mater 5(2):755–765. https://doi.org/10.1007/s42114-022-00487-2

    Article  CAS  Google Scholar 

  24. Hu X, Zhu C, Quan B, Sheng M, Wu H, Lu X, Qu J (2022) Engineering robust multifunctional composites with enhanced electromagnetic interference shielding and all-weather thermal management capability via simple layer-by-layer assembly. Chem Eng J 446:137423. https://doi.org/10.1016/j.cej.2022.137423

    Article  CAS  Google Scholar 

  25. Fang G, Zhang W, Yu M, Meng K, Tan X (2022) Experimental investigation of high performance composite phase change materials based on sodium acetate trihydrate for solar thermal energy storage. Sol Energy Mater Sol Cells 234:111418. https://doi.org/10.1016/j.solmat.2021.111418

    Article  CAS  Google Scholar 

  26. Yi H, Xia L, Song S (2022) Three-dimensional montmorillonite/Ag nanowire aerogel supported stearic acid as composite phase change materials for superior solar-thermal energy harvesting and storage. Compos Sci Technol 217:109121. https://doi.org/10.1016/j.compscitech.2021.109121

    Article  CAS  Google Scholar 

  27. Du Y, Huang H, Hu X, Liu S, Sheng X, Li X, Lu X, Qu J (2021) Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion. Renew Energy 171:1–10. https://doi.org/10.1016/j.renene.2021.02.077

    Article  CAS  Google Scholar 

  28. Yang J, Tang L-S, Bao R-Y, Bai L, Liu Z-Y, Yang W, Xie B-H, Yang M-B (2017) Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem Eng J 315:481–490. https://doi.org/10.1016/j.cej.2017.01.045

    Article  CAS  Google Scholar 

  29. Liu Y, Liu H, Qi H (2022) High efficiency electro- and photo-thermal conversion cellulose nanofiber-based phase change materials for thermal management. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2022.08.132

    Article  Google Scholar 

  30. Zhang H, Sun Q, Yuan Y, Zhang Z, Cao X (2018) A novel form-stable phase change composite with excellent thermal and electrical conductivities. Chem Eng J 336:342–351. https://doi.org/10.1016/j.cej.2017.12.046

    Article  CAS  Google Scholar 

  31. Song W-D, Shi L-P, Miao X-S, Chong C-T (2008) Synthesis and characteristics of a phase-change magnetic material. Adv Mater 20(12):2394–2397. https://doi.org/10.1002/adma.200702282

    Article  CAS  Google Scholar 

  32. Tao Z, Yang M, Wu L, Yan J, Yang F, Lin J, Wang J, Wang G (2021) Phase change material based on polypyrrole/Fe3O4- functionalized hollow kapok fiber aerogel matrix for solar /magnetic- thermal energy conversion and storage. Chem Eng J 423:130180. https://doi.org/10.1016/j.cej.2021.130180

    Article  CAS  Google Scholar 

  33. He Y-j, Shao Y-w, Xiao Y-y, Yang J-h, Qi X-d, Wang Y (2022) Multifunctional phase change composites based on elastic mxene/silver nanowire sponges for excellent thermal/solar/electric energy storage, shape memory, and adjustable electromagnetic interference shielding functions. ACS Appl Mater Interfaces 14(4):6057–6070. https://doi.org/10.1021/acsami.1c23303

    Article  CAS  Google Scholar 

  34. Tang Z, Gao Y, Cheng P, Jiang Y, Xu J, Chen X, Li A, Wang G (2022) Metal-organic framework derived magnetic phase change nanocage for fast-charging solar-thermal energy conversion. Nano Energy 99:107383. https://doi.org/10.1016/j.nanoen.2022.107383

    Article  CAS  Google Scholar 

  35. Zhou M, Xie D, Zhou K, Gong K, Yin L, Qian X, Shi C (2022) 3D porous aerogel based-phase change materials with excellent flame retardancy and shape stability for both thermal and light energy storage. Sol Energy Mater Sol Cells 236:111537. https://doi.org/10.1016/j.solmat.2021.111537

    Article  CAS  Google Scholar 

  36. Liu S, Wu H, Du Y, Lu X, Qu J (2021) Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage. Sol Energy Mater Sol Cells 230:111187. https://doi.org/10.1016/j.solmat.2021.111187

    Article  CAS  Google Scholar 

  37. Liu S, Sheng M, Wu H, Shi X, Lu X, Qu J (2022) Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities. J Mater Sci Technol 113:147–157. https://doi.org/10.1016/j.jmst.2021.11.008

    Article  Google Scholar 

  38. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  39. Feng L, Song P, Yan S, Wang H, Wang J (2015) The shape-stabilized phase change materials composed of polyethylene glycol and graphitic carbon nitride matrices. Thermochim Acta 612:19–24. https://doi.org/10.1016/j.tca.2015.05.001

    Article  CAS  Google Scholar 

  40. Li J, He L, Liu T, Cao X, Zhu H (2013) Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 118:48–53. https://doi.org/10.1016/j.solmat.2013.07.017

    Article  CAS  Google Scholar 

  41. Naguib M, Come J, Dyatkin B, Presser V, Taberna P-L, Simon P, Barsoum MW, Gogotsi Y (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 16(1):61–64. https://doi.org/10.1016/j.elecom.2012.01.002

    Article  CAS  Google Scholar 

  42. Lu X, Huang H, Zhang X, Lin P, Huang J, Sheng X, Zhang L, Qu J-p (2019) Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Compos Pt B-Eng 177:107372. https://doi.org/10.1016/j.compositesb.2019.107372

    Article  CAS  Google Scholar 

  43. Li X, Sheng X, Guo Y, Lu X, Wu H, Chen Y, Zhang L, Gu J (2021) Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J Mater Sci Technol 86:171–179. https://doi.org/10.1016/j.jmst.2021.02.009

    Article  CAS  Google Scholar 

  44. Lu X, Fang C, Sheng X, Zhang L, Qu J (2019) One-step and solvent-free synthesis of polyethylene glycol-based polyurethane as solid–solid phase change materials for solar thermal energy storage. Ind Eng Chem Res 58(8):3024–3032. https://doi.org/10.1021/acs.iecr.8b05903

    Article  CAS  Google Scholar 

  45. Zhang Y, Ma Z, Ruan K, Gu J (2022) Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res 15(6):5601–5609. https://doi.org/10.1007/s12274-022-4358-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Key Technology R&D Program of China (2020YFB1709304 and 2021YFC2101705), the National Natural Science Foundation of China (Nos. 52073107 and 52173036), and the Fundamental Research Funds for Central Universities (Grants 2021XXJS035).

Funding

This work was supported by the National Key Technology R&D Program of China (2020YFB1709304 and 2021YFC2101705), the National Natural Science Foundation of China (Nos. 52073107 and 52173036), and the Fundamental Research Funds for Central Universities (Grants 2021XXJS035).

Author information

Authors and Affiliations

Authors

Contributions

Kang Zhou made substantial contributions to the formal analysis, writing—original draft preparation, software, and data curation of the work. Yongji Sheng and Yi Li provided substantial constructive suggestions of conceptualization, management, and coordination responsibility of the work. Wenhuan Guo made substantial contributions to the investigation, software, and visualization of the work. Lida Wu and Yang Xu took part in the investigation and management of the work. Hao Wu was involved in methodology, research activity planning, and visualization of the work. Xinpeng Hu was involved in the methodology and investigation of the work. Mingfeng Ge was involved in the investigation and conceptualization of the work. Yu Du was involved in the investigation and visualization of the work. Xiang Lu provided substantial contributions to the methodology, supervision, funding acquisition, and validation of the work. Jinping Qu made substantial contributions to project administration, validation, and resources of the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hao Wu, Yi Li or Xiang Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Sheng, Y., Guo, W. et al. Biomass porous carbon/polyethylene glycol shape-stable phase change composites for multi-source driven thermal energy conversion and storage. Adv Compos Hybrid Mater 6, 34 (2023). https://doi.org/10.1007/s42114-022-00620-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00620-1

Keywords

Navigation