Skip to main content

Advertisement

Log in

Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Graphene oxide nanosheets can be assembled into multifunctional graphene aerogels for sensing and energy storage applications. However, due to strong van der Waals forces, reduced graphene oxide nanosheets often stack together, significantly compromising their performance. Here, we demonstrate high-performance multifunctional hybrid carbon aerogels by hybridizing graphene oxide nanosheets with functionalized carbon fibers using a hydrothermal assembly method followed by two-step freezing, natural drying, and annealing. We compared the difference between carbon microfibers and carbon nanofibers. Our results show that flexible carbon nanofibers can enable more bindings with graphene nanosheets, creating stabler three-dimensional structures and enabling more efficient electron transfer. The resulting hybrid graphene aerogels have a high compressive strength of 56.7 kPa at 50% strain, an electrical conductivity of 3.072 S m−1, and a strain-responsive electrical response sensitivity of 11.3 k Pa−1 in a low-pressure range of 0–0.15 kPa. These hybrid carbon aerogels were applied in strain sensors to detect various human bio-signals. Furthermore, they were used as free-standing electrodes in flexible supercapacitors, demonstrating satisfactory energy storage performances. Overall, we show that three-dimensional graphene-carbon nanofiber hybrid aerogels have excellent multifunctional properties for applications in flexible electronics and energy storage devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qiu B, Xing M, Zhang J (2018) Recent advances in three-dimensional graphene based materials for catalysis applications. Chem Soc Rev 47:2165–2216

    Article  CAS  Google Scholar 

  2. Chen Z, Zhuo H, Hu Y, Lai H, Liu L, Zhong L et al (2020) Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv Func Mater 30:1910292

    Article  CAS  Google Scholar 

  3. He Y, Zhou M, Mahmoud MHH, Lu X, He G, Zhang L et al (2022) Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv Compos Hybrid Mater 5:1939–1950

    Article  CAS  Google Scholar 

  4. Liu W, Chen Z, Zhou G, Sun Y, Lee HR, Liu C et al (2016) 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv Mater 28:3578–3583

    Article  CAS  Google Scholar 

  5. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428

    Article  CAS  Google Scholar 

  6. Zhou T, Wu C, Wang Y, Tomsia AP, Li M, Saiz E et al (2020) Super-tough MXene-functionalized graphene sheets Nat Commun 11:2077

    CAS  Google Scholar 

  7. Cao X, Zhang J, Chen S, Varley RJ, Pan K (2020) 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv Func Mater 30:2003618

    Article  CAS  Google Scholar 

  8. Wei H, Li A, Kong D, Li Z, Cui D, Li T et al (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4:86–95

    Article  CAS  Google Scholar 

  9. Chang X, Chen L, Chen J, Zhu Y, Guo Z (2021) Advances in transparent and stretchable strain sensors. Adv Compos Hybrid Mater 4:435–450

    Article  Google Scholar 

  10. Korkmaz S, Kariper İA (2020) Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J Energy Storage 27:101038

    Article  Google Scholar 

  11. Cai X, Lai L, Shen Z, Lin J (2017) Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J Mater Chem A 5:15423–15446

    Article  CAS  Google Scholar 

  12. Zhu C, Han TY, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM et al (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962

    Article  CAS  Google Scholar 

  13. Wang J, Duan X, Dong Q, Meng F, Tan X, Liu S et al (2019) Facile synthesis of N-doped 3D graphene aerogel and its excellent performance in catalytic degradation of antibiotic contaminants in water. Carbon 144:781–790

    Article  CAS  Google Scholar 

  14. Ren L, Hui KN, Hui KS, Liu Y, Qi X, Zhong J et al (2015) 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Sci Rep 5:14229

    Article  CAS  Google Scholar 

  15. Pottathara YB, Tiyyagura HR, Ahmad Z, Sadasivuni KK (2020) Graphene based aerogels: fundamentals and applications as supercapacitors. J Energy Storage 30:101549

    Article  Google Scholar 

  16. Min P, Li X, Liu P, Liu J, Jia XQ, Li XP et al (2021) Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv Func Mater 31:2103703

    Article  CAS  Google Scholar 

  17. Xia W, Qu C, Liang Z, Zhao B, Dai S, Qiu B et al (2017) High-performance energy storage and conversion materials derived from a single metal–organic framework/graphene aerogel composite. Nano Lett 17:2788–2795

    Article  CAS  Google Scholar 

  18. Ma Q, Du G, Guo B, Tang W, Li Y, Xu M et al (2020) Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room-temperature sodium-sulfur batteries. Chem Eng J 388:124210

    Article  CAS  Google Scholar 

  19. Chen R, Li X, Huang Q, Ling H, Yang Y, Wang X (2021) Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes. Chem Eng J 412:128755

    Article  CAS  Google Scholar 

  20. Cui S, Wu W, Liu C, Wang Y, Chen Q, Liu X (2021) Modification of the three-dimensional graphene aerogel self-assembled network using a titanate coupling agent and its thermal conductivity mechanism with epoxy composites. Nanoscale 13:18247–18255

    Article  CAS  Google Scholar 

  21. Wang H-F, Tang C, Zhang Q (2019) A review of graphene-based 3D van der Waals hybrids and their energy applications. Nano Today 25:27–37

    Article  CAS  Google Scholar 

  22. Ma Y, Yue Y, Zhang H, Cheng F, Zhao W, Rao J et al (2018) 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12:3209–3216

    Article  CAS  Google Scholar 

  23. Yao W, Mao R, Gao W, Chen W, Xu Z, Gao C (2020) Piezoresistive effect of superelastic graphene aerogel spheres. Carbon 158:418–425

    Article  CAS  Google Scholar 

  24. Afroze JD, Tong L, Abden MJ, Yuan Z, Chen Y (2021) Hierarchical honeycomb graphene aerogels reinforced by carbon nanotubes with multifunctional mechanical and electrical properties. Carbon 175:312–321

    Article  CAS  Google Scholar 

  25. Liu M, Zhang P, Qu Z, Yan Y, Lai C, Liu T et al (2019) Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat Commun 10:3917

    Article  Google Scholar 

  26. He B, Zhang Q, Li L, Sun J, Man P, Zhou Z et al (2018) High-performance flexible all-solid-state aqueous rechargeable Zn–MnO2 microbatteries integrated with wearable pressure sensors. J Mater Chem A 6:14594–14601

    Article  CAS  Google Scholar 

  27. Wang Q, Liu J, Ran X, Zhang D, Shen G, Miao M (2021) High-performance flexible self-powered strain sensor based on carbon nanotube/ZnSe/CoSe2 nanocomposite film electrodes. Nano Res 15:170–178

    Article  Google Scholar 

  28. Patil SS, Bhat TS, Teli AM, Beknalkar SA, Dhavale SB, Faras MM et al (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51

    CAS  Google Scholar 

  29. Wang Z, He S, Nguyen V, Riley KE (2020) Ionic liquids as “green solvent and/or electrolyte” for energy interface. Eng Sci 11:3–18

    CAS  Google Scholar 

  30. Zhai Y, Yang W, Xie X, Sun X, Wang J, Yang X et al (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium–oxygen batteries. Inorg Chem Front 9:1115–1124

    Article  CAS  Google Scholar 

  31. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z et al (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  32. Wang Y, Liu Y, Wang C, Liu H, Zhang J, Lin J et al (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Eng Sci 9:50–59

    Google Scholar 

  33. Liu M, Wu H, Wu Y, Xie P, Pashameah RA, Abo-Dief HM et al (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5:2021–2030

    Article  CAS  Google Scholar 

  34. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K et al (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695

    Article  Google Scholar 

  35. Zhang Z, Liu M, Ibrahim MM, Wu H, Wu Y, Li Y et al (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066

    Article  CAS  Google Scholar 

  36. Tang R, Xu P, Dong J, Gui H, Zhang T, Ding Y et al (2022) Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding. Carbon 188:492–502

    Article  CAS  Google Scholar 

  37. Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Lafdi K, De Vivo B et al (2013) The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology 24:305704

    Article  Google Scholar 

  38. Chiou Y-C, Chou H-Y, Shen M-Y (2019) Effects of adding graphene nanoplatelets and nanocarbon aerogels to epoxy resins and their carbon fiber composites. Mater Des 178:107869

    Article  Google Scholar 

  39. Gao Z, Zhu J, Rajabpour S, Joshi K, Kowalik M, Croom B et al (2020) Graphene reinforced carbon fibers. Sci Adv 6:eaaz4191

  40. Qin W, Zhu W, Ma J, Yang Y, Tang B (2021) Carbon fibers assisted 3D N-doped graphene aerogel on excellent adsorption capacity and mechanical property. Colloids Surf A 608:125602

    Article  CAS  Google Scholar 

  41. Afroze JD, Abden MJ, Yuan Z, Wang C, Wei L, Chen Y et al (2020) Core-shell structured graphene aerogels with multifunctional mechanical, thermal and electromechanical properties. Carbon 162:365–374

    Article  CAS  Google Scholar 

  42. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223

    Article  CAS  Google Scholar 

  43. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5:1168–1179

    Article  CAS  Google Scholar 

  44. Liu C, Yi F, Shu D, Chen W, Zhou X, Zhu Z et al (2019) In-situ N/S Co-doping three-dimensional succulent-like hierarchical carbon assisted by supramolecular polymerization for high-performance supercapacitors. Electrochim Acta 319:410–422

    Article  CAS  Google Scholar 

  45. Luo S, Ma Y, Wei X, Jin Y, Qiu L, Zhang W (2021) Malleable and recyclable vitrimer–graphene aerogel composite with high electrical conductivity. ACS Appl Electron Mater 3:1178–1183

    Article  CAS  Google Scholar 

  46. Wang C, Yang S, Ma Q, Jia X, Ma P-C (2017) Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds. Carbon 118:765–771

    Article  Google Scholar 

  47. Kabiri S, Tran DNH, Altalhi T, Losic D (2014) Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon 80:523–533

    Article  CAS  Google Scholar 

  48. Morimune-Moriya S, Goto T, Nishino T (2019) Effect of aspect ratio of graphene oxide on properties of poly (vinyl alcohol) nanocomposites. Nanocomposites 5:84–93

    Article  CAS  Google Scholar 

  49. Li Y, Zhu H, Zhu S, Wan J, Liu Z, Vaaland O et al (2015) Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Mater 7:e150–e

  50. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  51. Luo H, Xiong P, Xie J, Yang Z, Huang Y, Hu J et al (2018) Uniformly dispersed freestanding carbon nanofiber/graphene electrodes made by a scalable biological method for high-performance flexible supercapacitors. Adv Func Mater 28:1803075

    Article  Google Scholar 

  52. Xin L, Liu Q, Liu J, Chen R, Li R, Li Z et al (2017) Hierarchical metal-organic framework derived nitrogen-doped porous carbon/graphene composite for high performance supercapacitors. Electrochim Acta 248:215–224

    Article  CAS  Google Scholar 

  53. Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Marti C et al (2020) Density-functional tight-binding: basic concepts and applications to molecules and clusters. Adv Phys X 5:1710252

    CAS  Google Scholar 

  54. Long S, Feng Y, He F, Zhao J, Bai T, Lin H et al (2021) Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85:105973

    Article  CAS  Google Scholar 

  55. Yu ZL, Qin B, Ma ZY, Huang J, Li SC, Zhao HY et al (2019) Superelastic hard carbon nanofiber aerogels. Adv Mater 31:e1900651

    Article  Google Scholar 

  56. Si Y, Yu J, Tang X, Ge J, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802

    Article  Google Scholar 

  57. Ma Y, Liu Q, Li W, Zheng Y, Shi Q, Zhou Z et al (2021) Ultralight and robust carbon nanofiber aerogels for advanced energy storage. J Mater Chem A 9:900–907

    Article  CAS  Google Scholar 

  58. Ieamviteevanich P, Palaporn D, Chanlek N, Poo-arporn Y, Mongkolthanaruk W, Eichhorn SJ et al (2020) Carbon nanofiber aerogel/magnetic core–shell nanoparticle composites as recyclable oil sorbents. ACS Appl Nano Mater 3:3939–3950

    Article  CAS  Google Scholar 

  59. Wang J, Wan Y, Xun X, Zheng L, Zhang Q, Zhang Z et al (2021) Engineering bacteria for high-performance three-dimensional carbon nanofiber aerogel. Carbon 183:267–276

    Article  CAS  Google Scholar 

  60. Wu X, Liu X, Wang J, Huang J, Yang S (2018) Reducing structural defects and oxygen-containing functional groups in GO-hybridized CNTs aerogels: simultaneously improve the electrical and mechanical properties to enhance pressure sensitivity. ACS Appl Mater Interfaces 10:39009–39017

    Article  CAS  Google Scholar 

  61. Peng X, Wu K, Hu Y, Zhuo H, Chen Z, Jing S et al (2018) A mechanically strong and sensitive CNT/rGO–CNF carbon aerogel for piezoresistive sensors. J Mater Chem A 6:23550–23559

    Article  CAS  Google Scholar 

  62. Wu J, Li H, Lai X, Chen Z, Zeng X (2020) Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor. Chem Eng J 386:123998

    Article  CAS  Google Scholar 

  63. Kuang J, Dai Z, Liu L, Yang Z, Jin M, Zhang Z (2015) Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale 7:9252–9260

    Article  CAS  Google Scholar 

  64. Si Y, Wang X, Yan C, Yang L, Yu J, Ding B (2016) Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater 28:9512–9518

    Article  CAS  Google Scholar 

  65. Li S, Chen T, Xiao X (2020) Periodically inlaid carbon fiber bundles in the surface of honeycomb woven fabric for fabrication of normal pressure sensor. J Mater Sci 55:6551–6565

    Article  CAS  Google Scholar 

  66. Qin Y, Peng Q, Ding Y, Lin Z, Wang C, Li Y, Xu F, Li J, Yuan Y, He X, Li Y (2015) Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9:8933–8941

    Article  CAS  Google Scholar 

  67. Xiao J, Tan Y, Song Y, Zheng Q (2018) A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J Mater Chem A 6:9074–9080

    Article  CAS  Google Scholar 

  68. Wang X, Gu Y, Xiong Z, Cui Z, Zhang T (2014) Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26:1336–1342

    Article  CAS  Google Scholar 

  69. Jian M, Xia K, Wang Q, Yin Z, Wang H, Wang C et al (2017) Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv Func Mater 27:1606066

    Article  Google Scholar 

  70. Ghosh K, Yue CY (2018) Development of 3D MoO3/graphene aerogel and sandwich-type polyaniline decorated porous MnO2−graphene hybrid film based high performance all-solid-state asymmetric supercapacitors. Electrochim Acta 276:47–63

    Article  CAS  Google Scholar 

  71. Wu X, Tang L, Zheng S, Huang Y, Yang J, Liu Z et al (2018) Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J Power Sources 397:189–195

    Article  CAS  Google Scholar 

  72. Xu M, Wang A, Xiang Y, Niu J (2021) Biomass-based porous carbon/graphene self-assembled composite aerogels for high-rate performance supercapacitor. J Clean Prod 315:128110

    Article  CAS  Google Scholar 

Download references

Funding

J. D. A. is a recipient of the EITR Scholarship from the Faculty of Engineering at the University of Sydney and wishes to acknowledge the support from the Australian Centre for Microscope & Microanalysis (ACMM) of the University of Sydney. The support provided for the BET test by Dr. Victor Lo, Research Officer at the University of Sydney, is highly appreciated. L. T. acknowledges the support of the Australian Research Council (DP170104916). Y. C. acknowledges financial support from the Australian Research Council under the ARC research hub for safe and reliable energy (IH200100035).

Author information

Authors and Affiliations

Authors

Contributions

J. D. A.: conceptualization, methodology, formal analysis, writing—original draft, preparation; L. T.: conceptualization, supervision, writing—review and editing; M. J. A.: methodology, formal analysis; Y. C.: conceptualization, supervision, writing—review and editing.

Corresponding authors

Correspondence to Liyong Tong or Yuan Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2542 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afroze, J.D., Tong, L., Abden, M.J. et al. Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage. Adv Compos Hybrid Mater 6, 18 (2023). https://doi.org/10.1007/s42114-022-00594-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00594-0

Keywords

Navigation