Skip to main content
Log in

Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this study, the innovative and multi-functional chitosan-based hydrogel beads were immobilized with silver nanoparticles (AgNPs) via polydopamine coating to simultaneously enhance antimicrobial and adsorption activity. The morphological observation under scanning electron microscopy along with elemental mapping by energy disperse X-ray spectrometer indicated that AgNPs were successfully synthesized and immobilized not only on the surface but also the interior of PDA-coated chitosan beads. The covalent silver–carboxylate linkage along with hydrophobic and Van der Waals forces was evidenced by Fourier transform infrared spectroscopy to further confirm the in situ synthesis of AgNPs on the surface of beads. The equilibrium swelling rate of the prepared hydrogel beads decreased as pH increased, being 160%, 100%, and 80% at pH 5, 7, and 9, respectively. The adsorption performance of the hydrogel beads was investigated for the removal of an anionic dye and a metal ion (Cu (II)). The presence of AgNPs enhanced the adsorption capacity of the beads for the above-mentioned adsorbates. The antimicrobial activities were determined against potential human pathogens including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The antimicrobial activity of the obtained beads on the Gram-negative bacteria was higher than on the Gram-positive bacteria. The obtained hydrogel beads could be used for simultaneously controlling chemical and biological contaminants in wastewater.

Graphical abstract

Polydopamine coating on chitosan beads enables the immobilization of in situ synthesized silver nanoparticles for superior adsorption and antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Asano T, Burton F, Leverenz H (2007) Water reuse: issues, technologies, and applications. McGraw-Hill Education.

  2. Aivalioti M, Papoulias P, Kousaiti A, Gidarakos E (2012) Adsorption of BTEX, MTBE and TAME on natural and modified diatomite. J Hazard Mater 207:117–127. https://doi.org/10.1016/j.jhazmat.2011.03.040

    Article  CAS  Google Scholar 

  3. Bandura L, Kołodyńska D, Franus W (2017) Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process Saf Environ 109:214–223. https://doi.org/10.1016/j.psep.2017.03.036

    Article  CAS  Google Scholar 

  4. Alqadami AA, Naushad M, Abdalla MA, Ahamad T, AlOthman ZA, Alshehri SM, Ghfar AA (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436. https://doi.org/10.1016/j.jclepro.2017.04.085

    Article  CAS  Google Scholar 

  5. Giacobbo A, Meneguzzi A, Bernardes AM, de Pinho MN (2017) Pressure-driven membrane processes for the recovery of antioxidant compounds from winery effluents. J Clean Prod 155:172–178. https://doi.org/10.1016/j.jclepro.2016.07.033

    Article  CAS  Google Scholar 

  6. Jin X, Yu B, Lin J, Chen Z (2016) Integration of biodegradation and nano-oxidation for removal of PAHs from aqueous solution. ACS Sustain. Chem Eng 4(9):4717–4723. https://doi.org/10.1021/acssuschemeng.6b00933

    Article  CAS  Google Scholar 

  7. Yamaga F, Washio K, Morikawa M (2010) Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ Sci Technol 44(16):6470–6474. https://doi.org/10.1021/es1007017

    Article  CAS  Google Scholar 

  8. Gatsios E, Hahladakis JN, Gidarakos E (2015) Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals. J Environ Manage 154:117–127. https://doi.org/10.1016/j.jenvman.2015.02.018

    Article  CAS  Google Scholar 

  9. Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521. https://doi.org/10.1016/j.biortech.2004.12.005

    Article  CAS  Google Scholar 

  10. Gupta VK, Srivastava SK, Mohan D, Sharma S (1998) Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manage 17(8):517–522. https://doi.org/10.1016/S0956-053X(97)10062-9

    Article  Google Scholar 

  11. Foo KY, Hameed BH (2010) An overview of dye removal via activated carbon adsorption process. Desalination Water Treat. 19(1–3):255–274. https://doi.org/10.1016/j.biortech.2004.12.005

    Article  CAS  Google Scholar 

  12. Nieuwenhuijsen MJ, Toledano MB, Eaton NE, Fawell J, Elliott P (2000) Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup Environ Med 57(2):73–85. https://doi.org/10.1136/oem.57.2.73

    Article  CAS  Google Scholar 

  13. Jolley RL, Brungs WA, Cotruvo JA, Cumming RB, Mattice JS, Jacobs VA (1983) Water chlorination: environmental impact and health effects. Volume 4, Book 1. Chemistry and water treatment, Ann Arbor Science Publishers, Ann Arbor, MI

  14. Centers for Disease Control and Prevention (1999) Ten great public health achievements–United States, 1900–1999. MMWR. Morbidity and mortality weekly report 48(12):241–243

  15. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  16. Pakdel PM, Peighambardoust SJ (2018) Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 201:264–279. https://doi.org/10.1016/j.carbpol.2018.08.070

    Article  CAS  Google Scholar 

  17. Van Tran V, Park D, Lee YC (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Pollut Res 25(25):24569–24599. https://doi.org/10.1007/s11356-018-2605-y

    Article  CAS  Google Scholar 

  18. Goy RC, Britto DD, Assis OB (2009) A review of the antimicrobial activity of chitosan. Polímeros 19(3):241–247. https://doi.org/10.1590/S0104-14282009000300013

    Article  CAS  Google Scholar 

  19. Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21(6):703–714. https://doi.org/10.1016/j.fm.2004.02.008

    Article  CAS  Google Scholar 

  20. Qu B, Luo Y (2020) Chitosan-based hydrogel beads: preparations, modifications and applications in food and agriculture sectors - a review. Int J Biol Macromol 152:437–448. https://doi.org/10.1016/j.ijbiomac.2020.02.240

    Article  CAS  Google Scholar 

  21. Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha KL (2021) Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym 251:117000. https://doi.org/10.1016/j.carbpol.2020.117000

    Article  CAS  Google Scholar 

  22. Wang T, Hu Q, Lee JY, Luo Y (2018) Solid lipid–polymer hybrid nanoparticles by in situ conjugation for oral delivery of astaxanthin. J Agric Food Chem. 66(36):9473-9480. https://doi.org/10.1021/acs.jafc.8b02827

  23. Ball V (2018) Polydopamine nanomaterials: recent advances in synthesis methods and applications. Front Bioeng Biotechnol 6:109. https://doi.org/10.3389/fbioe.2018.00109

    Article  Google Scholar 

  24. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5(2):244–249. https://doi.org/10.1166/jnn.2005.034

    Article  CAS  Google Scholar 

  25. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874. https://doi.org/10.3390/molecules20058856

    Article  CAS  Google Scholar 

  26. Govindappa M, Farheen H, Chandrappa CP, Rai RV, Raghavendra VB (2016) Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv Nat Sci- Nanosci Nanotechnol 7(3):035014. https://doi.org/10.1088/2043-6262/7/3/035014

    Article  CAS  Google Scholar 

  27. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4(1):173–185

    Article  CAS  Google Scholar 

  28. Wu N, Du W, Hu Q, Jiang SV (2021) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11-23. https://doi.org/10.30919/es8d1149

  29. Kodoth AK, Badalamoole V (2020) Silver nanoparticle-embedded pectin-based hydrogel for adsorptive removal of dyes and metal ions. Polym Bull 77(2):541–564. https://doi.org/10.1007/s00289-019-02757-4

    Article  CAS  Google Scholar 

  30. Abdelkrim S, Mokhtar A, Djelad A, Bennabi F, Souna A, Bengueddach A, Sassi M (2020) Chitosan/Ag-bentonite nanocomposites: preparation, characterization, swelling and biological properties. J Inorg Organomet Polym Mater 30(3):831–840. https://doi.org/10.1007/s10904-019-01219-8

    Article  CAS  Google Scholar 

  31. Narayanan A, Nair MS, Muyyarikkandy MS, Amalaradjou MA (2018) Inhibition and inactivation of uropathogenic Escherichia coli biofilms on urinary catheters by sodium selenite. Int J Mol Sci 19(6). https://doi.org/10.3390/ijms19061703

  32. Qiu Y, Zhu Z, Miao Y, Zhang P, Jia X, Liu Z, Zhao X (2020) Polymerization of dopamine accompanying its coupling to induce self-assembly of block copolymer and application in drug delivery. Polym Chem 11(16):2811–2821. https://doi.org/10.1039/D0PY00085J

    Article  CAS  Google Scholar 

  33. Bucher T, Clodt JI, Grabowski A, Hein M, Filiz V (2017) Colour-value based method for polydopamine coating-stability characterization on polyethersulfone membranes. Membranes 7(4):70. https://doi.org/10.3390/membranes7040070

    Article  CAS  Google Scholar 

  34. Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R (2013) Biosynthesis of silver nanoparticles using brown marine macroalga. Sargassum muticum aqueous extract. Materials 6(12):5942–5950. https://doi.org/10.3390/ma6125942

    Article  CAS  Google Scholar 

  35. Bhagat M, Anand R, Datt R, Gupta V, Arya S (2019) Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J Inorg Organomet Polym Mater 29(3):1039–1047. https://doi.org/10.1007/s10904-018-0994-5

    Article  CAS  Google Scholar 

  36. Vona D, Cicco SR, Ragni R, Leone G, Presti ML, Farinola GM (2018) Biosilica/polydopamine/silver nanoparticles composites: new hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells. MRS Commun 8(3):911–917. https://doi.org/10.1557/mrc.2018.103

    Article  CAS  Google Scholar 

  37. Luo Y, Teng Z, Li Y, Wang Q (2015) Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym 122:221–229. https://doi.org/10.1016/j.carbpol.2014.12.084

    Article  CAS  Google Scholar 

  38. Wang T, Luo Y (2018) Chitosan hydrogel beads functionalized with thymol-loaded solid lipid-polymer hybrid nanoparticles. Int J Mol Sci 19(10):3112. https://doi.org/10.3390/ijms19103112

    Article  CAS  Google Scholar 

  39. Ma X, Wu G, Dai F, Li D, Li H, Zhang L, Deng H (2021), Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydr Polym 251:110758. https://doi.org/10.1016/j.carbpol.2020.117058

    Article  CAS  Google Scholar 

  40. Ngoc-Thang N, Liu J-H (2014) A green method for in situ synthesis of poly(vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. J Taiwan Inst Chem Eng 45(5):2827–2833. https://doi.org/10.1016/j.jtice.2014.06.017

    Article  CAS  Google Scholar 

  41. Nesovic K et al (2019) Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles - in vitro study. Eur Polym J 121:109257. https://doi.org/10.1016/j.eurpolymj.2019.109257

    Article  CAS  Google Scholar 

  42. Qu X, Wirsen A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41(12):4589–4598. https://doi.org/10.1016/S0032-3861(99)00685-0

    Article  CAS  Google Scholar 

  43. El-Hady A, Saeed S (2020) Antibacterial properties and pH sensitive swelling of insitu formed silver-curcumin nanocomposite based chitosan hydrogel. Polymers 12(11):2451. https://doi.org/10.3390/polym12112451

    Article  CAS  Google Scholar 

  44. Yao KD et al (1994) Swelling kinetics and release characteristic of cross-linked chitosan - polyether polymer network (semi-ipn) hydrogels. J Polym Sci Part A- Polym Chem 32(7):1213–1223. https://doi.org/10.1002/pola.1994.080320702

    Article  CAS  Google Scholar 

  45. Masood N et al (2019) Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 559:23–36. https://doi.org/10.1016/j.ijpharm.2019.01.019

    Article  CAS  Google Scholar 

  46. Thamer BM et al (2020) In situ preparation of novel porous nanocomposite hydrogel as effective adsorbent for the removal of cationic dyes from polluted water. Polymers 12(12). https://doi.org/10.3390/polym12123002

  47. Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101(6):1800–1806. https://doi.org/10.1016/j.biortech.2009.10.051

    Article  CAS  Google Scholar 

  48. Fan C et al (2016) The stability of magnetic chitosan beads in the adsorption of Cu2+. RSC Adv 6(4):2678–2686. https://doi.org/10.1039/C5RA20943A

    Article  CAS  Google Scholar 

  49. Fan C et al (2018) Evaluation of magnetic chitosan beads for adsorption of heavy metal ions. Sci Total Environ 627:1396–1403. https://doi.org/10.1016/j.scitotenv.2018.02.033

    Article  CAS  Google Scholar 

  50. IM Kenawy et al (2019) Melamine grafted chitosan-montmorillonite nanocomposite for ferric ions adsorption: central composite design optimization study J Clean Prod 241.https://doi.org/10.1016/j.jclepro.2019.118189

  51. Futalan CM et al (2012) Copper, nickel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in ternary system. Sustain Environ Res 22(6):345–355

    CAS  Google Scholar 

  52. Durán N et al (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed-Nanotechnol Biol Med 12(3):789–799. https://doi.org/10.1016/j.nano.2015.11.016

    Article  CAS  Google Scholar 

  53. Roy A et al (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9(5):2673–2702. https://doi.org/10.1039/C8RA08982E

    Article  CAS  Google Scholar 

  54. Feng QL et al (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668. https://doi.org/10.1002/1097-4636(20001215)52:4%3C662::AID-JBM10%3E3.0.CO;2-3

    Article  CAS  Google Scholar 

  55. Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol Biol Med 3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001

    Article  CAS  Google Scholar 

  56. Vertelov GK et al (2008) A versatile synthesis of highly bactericidal Myramistin (R) stabilized silver nanoparticles. Nanotechnology 19(35). https://doi.org/10.1088/0957-4484/19/35/355707

  57. Piras CC, Mahon CS, Smith DK (2020) Self-assembled supramolecular hybrid hydrogel beads loaded with silver nanoparticles for antimicrobial applications. Chem Eur J 26(38):8452–8457. https://doi.org/10.1002/chem.202001349

    Article  CAS  Google Scholar 

  58. Park S et al (2018) Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci Total Environ 625:477–485. https://doi.org/10.1016/j.scitotenv.2017.12.318

    Article  CAS  Google Scholar 

  59. Long YM et al (2017) Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int J Nanomed 12:3193–3206. https://doi.org/10.2147/IJN.S132327

    Article  CAS  Google Scholar 

  60. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. https://doi.org/10.1021/es9035557

    Article  CAS  Google Scholar 

Download references

Funding

This work was, in part, supported by the U.S. Department of Agriculture (USDA), National Institute of Food and Agriculture, Specialty Crop Research Initiative, Award No. 2016-51181-25403, and Hatch Multistate project accession number 1020207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangchao Luo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wusigale, Kuttappan, D. et al. Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics. Adv Compos Hybrid Mater 4, 696–706 (2021). https://doi.org/10.1007/s42114-021-00305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00305-1

Keywords

Navigation