Skip to main content
Log in

Highly efficient polyvinyl alcohol/montmorillonite flame retardant nanocoating for corrugated cardboard

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A one-pot self-assembled nanocoating with a well-defined nanostructure was created consisting of polyvinyl alcohol (PVA) and montmorillonite (MMT) and applied to double-walled corrugated cardboard (CB) via spray coating. X-ray diffraction (XRD) analysis revealed the intercalation of PVA into the interstitial spaces of the MMT nanosheets and the alignment of the nanosheets. Vertical burning test, surface burning test, and horizontal burning test showed marked reductions in afterflame time, afterglow time, and flame spread, displaying quick self-extinguishing behaviors. Scanning electron microscopy (SEM) images revealed a uniform coating of the surface of CB before burning tests. After burning, the coated CB samples formed a dense char layer that protected the underlying fibers. A PVA/MMT nanocoating applied via spray coating greatly inhibited flame spread and improved flame retardancy.

Graphical abstract

A one-pot coassembled nanocoating consisting of polyvinyl alcohol and montmorillonite was developed to significantly improve the flame retardancy of cardboard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen H, Chen H (2015) Integrated industrial lignocellulose biorefinery chains. Lignocellul Biorefinery Eng 219–245. https://doi.org/10.1016/B978-0-08-100135-6.00007-7

  2. Rennel J, Dillén S (2001) Pulp and paper: wood sources. In: Encyclopedia of Materials: Science and Technology

  3. Colditz GA (2015) Paper Industry. SAGE Encycl Cancer Soc. https://doi.org/10.4135/9781483345758.n439

  4. Zhang D, Williams BL, Becher EM et al (2018) Flame retardant and hydrophobic cotton fabrics from intumescent coatings. Adv Compos Hybrid Mater 1:177–184. https://doi.org/10.1007/s42114-017-0006-1

    Article  CAS  Google Scholar 

  5. Alongi J, Carletto RA, Bosco F et al (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117. https://doi.org/10.1016/j.polymdegradstab.2013.11.016

    Article  CAS  Google Scholar 

  6. Guin T, Krecker M, Milhorn A, Grunlan JC (2014) Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating. Cellulose 21:3023–3030. https://doi.org/10.1007/s10570-014-0286-3

    Article  CAS  Google Scholar 

  7. Gu L, Chai C, Luo Y (2016) Preparation and performance evaluation of phosphorus-nitrogen synergism flame-retardant water-borne coatings for cotton and polyester fabrics. J Polym Res 23:0–9. https://doi.org/10.1007/s10965-016-0954-0

    Article  CAS  Google Scholar 

  8. Carosio F, Alongi J, Malucelli G (2013) Flammability and combustion properties of ammonium polyphosphate-/ poly(acrylic acid)-based layer by layer architectures deposited on cotton, polyester and their blends. Polym Degrad Stab 98:1626–1637. https://doi.org/10.1016/j.polymdegradstab.2013.06.019

    Article  CAS  Google Scholar 

  9. Chaos M, Khan MM, Dorofeev SB (2013) Pyrolysis of corrugated cardboard in inert and oxidative environments. Proc Combust Inst 34:2583–2590. https://doi.org/10.1016/j.proci.2012.06.031

    Article  CAS  Google Scholar 

  10. Chaos M, Khan MM, Krishnamoorthy N et al (2011) Experiments and modeling of single- and triple-wall corrugated cardboard: effective material properties and fire behavior. Conf Proc - Fire Mater 2011, 12th Int Conf Exhib 625–636

  11. Rosace G, Castellano A, Trovato V et al (2018) Thermal and flame retardant behaviour of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organophosphorus system. Carbohydr Polym 196:348–358. https://doi.org/10.1016/j.carbpol.2018.05.012

    Article  CAS  Google Scholar 

  12. van der Veen I, de Boer J (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88:1119–1153. https://doi.org/10.1016/j.chemosphere.2012.03.067

    Article  CAS  Google Scholar 

  13. Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364. https://doi.org/10.1177/0734904106068426

    Article  CAS  Google Scholar 

  14. Alongi J, Cuttica F, Carosio F (2016) DNA Coatings from byproducts: a panacea for the flame retardancy of EVA, PP, ABS, PET, and PA6? ACS Sustain Chem Eng 4:3544–3551. https://doi.org/10.1021/acssuschemeng.6b00625

    Article  CAS  Google Scholar 

  15. Zhang Q, Lin D, Deng B et al (2017) Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv Mater 29:1605506. https://doi.org/10.1002/adma.201605506

    Article  CAS  Google Scholar 

  16. Zope IS, Foo S, Seah DGJ et al (2017) Development and evaluation of a water-based flame retardant spray coating for cotton fabrics. ACS Appl Mater Interfaces 9:40782–40791. https://doi.org/10.1021/acsami.7b09863

    Article  CAS  Google Scholar 

  17. Wang X, Kalali EN, Wan JT, Wang DY (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46. https://doi.org/10.1016/j.progpolymsci.2017.02.001

    Article  CAS  Google Scholar 

  18. Rejeesh CR, Saju KK (2017) Methods and materials for reducing flammability behaviour of coir fibre based composite boards: a review. Mater Today Proc 4:9399–9407. https://doi.org/10.1016/j.matpr.2017.06.193

    Article  Google Scholar 

  19. Mochizuki Y, Mizutani Y, Okoshi M, Hamada H (2016) The flame retardancy study of the furniture made from corrugated cardboard. Energy Procedia 89:93–97. https://doi.org/10.1016/j.egypro.2016.05.013

    Article  CAS  Google Scholar 

  20. Ding F, Liu J, Zeng S et al (2017) Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci Adv 3:e1701212. https://doi.org/10.1126/sciadv.1701212

    Article  CAS  Google Scholar 

  21. Yu J, Liu J, Clearfield A et al (2016) Synthesis of layered double hydroxide single-layer nanosheets in formamide. Inorg Chem 55:12036–12041. https://doi.org/10.1021/acs.inorgchem.6b02203

    Article  CAS  Google Scholar 

  22. Zhang D, Williams BL, Shrestha SB et al (2017) Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. J Colloid Interface Sci 505:892–899. https://doi.org/10.1016/j.jcis.2017.06.087

    Article  CAS  Google Scholar 

  23. Liu J, Chavez SE, Ding H, Farooqui MM, Hou Z, Lin S, D’Auria TD, Kennedy JM, Lachance AM, Sun L (2021) Ultra-transparent nanostructured coatings via flow-induced one-step coassembly. Nano Mater Sci 3. https://doi.org/10.1016/j.nanoms.2021.07.001

  24. Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9:4070–4076. https://doi.org/10.1021/acsnano.5b00121

    Article  CAS  Google Scholar 

  25. Zhou Y, LaChance AM, Smith AT et al (2019) Strategic design of clay-based multifunctional materials: from natural minerals to nanostructured membranes. Adv Funct Mater 29:1807611. https://doi.org/10.1002/adfm.201807611

    Article  CAS  Google Scholar 

  26. Sun L, Boo WJ, Liu J et al (2007) Preparation of intercalating agent-free epoxy/clay nanocomposites. In: Polymer Engineering and Science. John Wiley & Sons, Ltd, pp 1708–1714

  27. Zhou Y, Ding H, Smith AT et al (2019) Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes. J Mater Chem A 7:14089–14096. https://doi.org/10.1039/c9ta00801b

    Article  CAS  Google Scholar 

  28. Li W, Zhao F, Zhu B et al (2020) Preparation and characterization of 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin grafted on organosilane-pillared montmorillonite by covalent bonding. Adv Compos Hybrid Mater 3:541–545. https://doi.org/10.1007/s42114-020-00180-2

    Article  CAS  Google Scholar 

  29. Huang W, Zeng S, Liu J, Sun L (2015) Bi-axially oriented polystyrene/montmorillonite nanocomposite films. RSC Adv 5:58191–58198. https://doi.org/10.1039/c5ra09598k

    Article  CAS  Google Scholar 

  30. Fan P, Liu H, Marosz V et al (2021) High performance composite polymer electrolytes for lithium-ion batteries. Adv Funct Mater 31:2101380. https://doi.org/10.1002/adfm.202101380

    Article  CAS  Google Scholar 

  31. Zhang B, Liu J, Ren M, Wu C, Moran TJ, Zeng S, Chavez SE, Hou Z, Li Z, LaChance AM, Jow TR, Huey BD, Cao Y, Sun L (2021) Reviving the “Schottky” barrier for flexible polymer dielectrics with a superior 2D nanoassembly coating. Adv Mater 33. https://doi.org/10.1002/adma.202101374

  32. Zhang D, Williams BL, Santos VH et al (2020) Self-assembled intumescent flame retardant coatings: influence of pH on the flammability of cotton fabrics. Eng Sci 12:106–112. https://doi.org/10.30919/es8d1134

  33. Chen Y, Ding L, Jiang B et al (2019) Excellent gas barrier properties PET film modified by silicone resin/sericite nanocomposite coatings. ES Mater Manuf. https://doi.org/10.30919/esmm5f216

  34. Nidamanuri N, Li Y, Li Q, Dong M (2020) Graphene and graphene oxide-based membranes for gas separation. Eng Sci 9:3–16

    CAS  Google Scholar 

  35. Zhang D, Hu S, Sun Y et al (2020) XTe (X = Ge, Sn, Pb) Monolayers: promising thermoelectric materials with ultralow lattice thermal conductivity and high-power factor. ES Energy Environ. https://doi.org/10.30919/esee8c934

  36. Hu H, Ding F, Ding H et al (2020) Sulfonated poly(fluorenyl ether ketone)/sulfonated α-zirconium phosphate nanocomposite membranes for proton exchange membrane fuel cells. Adv Compos Hybrid Mater 3:498–507. https://doi.org/10.1007/s42114-020-00182-0

    Article  CAS  Google Scholar 

  37. Ding F, Hu H, Ding H et al (2020) Sulfonated poly(fluorene ether ketone) (SPFEK)/α-zirconium phosphate (ZrP) nanocomposite membranes for fuel cell applications. Adv Compos Hybrid Mater 3:546–550. https://doi.org/10.1007/s42114-020-00184-y

    Article  CAS  Google Scholar 

  38. Das R, Vupputuri S, Hu Q et al (2020) Synthesis and characterization of antiflammable vinyl ester resin nanocomposites with surface functionalized nanotitania. ES Mater Manuf. https://doi.org/10.30919/esmm5f709

  39. Padvi MN, Moholkar AV, Prasad SR, Prasad NR (2021) A critical review on design and development of gas sensing materials. Eng Sci. https://doi.org/10.30919/es8d431

  40. Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 100:6496–6504. https://doi.org/10.1016/j.biortech.2009.06.095

    Article  CAS  Google Scholar 

  41. Lin YC, Cho J, Tompsett GA et al (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107. https://doi.org/10.1021/jp906702p

    Article  CAS  Google Scholar 

  42. Nam S, Easson MW, Condon BD et al (2019) A reinforced thermal barrier coat of a Na-tannic acid complex from the view of thermal kinetics. RSC Adv 9:10914–10926

    Article  CAS  Google Scholar 

Download references

Funding

This research is sponsored by the NSF (CMMI-1562907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyi Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, B.L., Ding, H., Hou, Z. et al. Highly efficient polyvinyl alcohol/montmorillonite flame retardant nanocoating for corrugated cardboard. Adv Compos Hybrid Mater 4, 662–669 (2021). https://doi.org/10.1007/s42114-021-00299-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00299-w

Keywords

Navigation