Skip to main content
Log in

Highly sensitive and selective 2-nitroaniline chemical sensor based on Ce-doped SnO2 nanosheets/Nafion-modified glassy carbon electrode

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this paper, pure SnO2 and Ce-doped SnO2 nanosheets were synthesized through a facile hydrothermal method. The synthesized materials were characterized by different techniques for their physico-chemical properties. The XRD data indicated the characteristic tetragonal rutile crystal phase for SnO2. Ce doping was ascertained by the presence of the diffraction peaks of CeO2 in all the doped samples of the SnO2 nanosheets. FESEM images revealed highly rough surfaces as well as the agglomeration of a large number of small nanoparticles of multiple shapes to form nanosheets like morphologies for pure SnO2 and Ce-doped SnO2. Electrochemical techniques like cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry were applied to demonstrate the electrochemical performances of the pure SnO2 and Ce-doped SnO2 nanosheets/Nafion-modified glassy carbon electrode (GCE). The 3% Ce-doped SnO2 nanosheet/Nafion-modified GCE showed a remarkable sensitivity of 0.9986 μA μM−1 cm−2 over a linear dynamic range of 0.5–20.3 µM. The corresponding linear regression equation was Ip (μA) = 0.0709 [2-nitroaniline (μM)] + 0.1385 with R2 = 0.99325. The LOD of the modified sensor was found to be 6.3 ± 0.1 nM at the signal-to-noise ratio of S/N = 3. The newly developed sensor electrode exhibited good selectivity toward 2-nitroaniline in the presence of common interfering species.

Graphical abstract

Fabrication and characterization of highly sensitive and selective 2-nitroaniline chemical sensor based on cerium-doped tin oxide nanosheets/Nafion-modified glassy carbon electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xu CH, Chen JZ (2016) Atmospheric-pressure plasma jet processed SnO2/CNT nanocomposite for supercapacitor application. Ceram Int 42:14287–14291. https://doi.org/10.1016/j.ceramint.2016.06.023

    Article  CAS  Google Scholar 

  2. Padvi MN, Moholkar AV, Prasad SR, Prasad NR (2021) A critical review on design and development of gas sensing materials. Engineered Science. 15. https://doi.org/10.30919/es8d431.

  3. Li Y, Wang X, Wang Z, Chen L (2019) Facile synthesis of SnO2 nanorods for Na-ion batteries, ES Energy & Environment 3 (2019) 55–59. https://doi.org/10.30919/esee8c198.

  4. Dimarco BN, Sampaio RN, James EM, Barr TJ, Bennett MT, Meyer GJ (2020) Efficiency Considerations for SnO2-Based Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 12:23923–23930. https://doi.org/10.1021/acsami.0c04117

    Article  CAS  Google Scholar 

  5. Sumathi P (2020) Synthesis, Characterization and Antimicrobial Studies of SnO2 Nanoparticles, Int. J. Chem Tech Res. 13: 203–209. https://doi.org/10.20902/ijctr.2019.130317.

  6. Yang L, Zhou Q, Wang G, Yang Y (2013) Acetylcholinesterase biosensor based on SnO2 nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Biosens Bioelectron 49:25–31. https://doi.org/10.1016/j.bios.2013.04.037

    Article  CAS  Google Scholar 

  7. Li X, Yan J, Zhu K (2021) Fabrication and characterization of Pt doped Ti/Sb-SnO2 electrode and its efficient electro-catalytic activity towards phenol. Engineered Science. 15 (2021). https://doi.org/10.30919/es8d432.

  8. J. Divya, A. Pramothkumar, S. Joshua Gnanamuthu, D.C. Bernice Victoria, P.C. Jobe prabakar, Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach, Phys. B Condens. Matter. 588 (2020) 412169. https://doi.org/10.1016/j.physb.2020.412169.

  9. Chattopadhyay S, Kumawat A, Misra KP, Halder N, Bandyopadhyay A, Antony A, Rao A, Poornesh P, Jedryka J, Ozga K, Kucharska B (2021) Micro-strain administered SHG intensity enhancement by heavy Ce doping in co-precipitated ZnO nanoparticles, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 266:115041. https://doi.org/10.1016/j.mseb.2021.115041.

  10. Chen K, Zhang H, Tong H, Wang L, Tao L, Wang K, Zhang Y, Zhou X (2021) Down-conversion Ce-doped TiO2 nanorod arrays and commercial available carbon based perovskite solar cells: Improved performance and UV photostability. Int J Hydrogen Energy 46:5677–5688. https://doi.org/10.1016/j.ijhydene.2020.11.074

    Article  CAS  Google Scholar 

  11. Islam MR, Saiduzzaman M, Nishat SS, Kabir A, Farhad SFU (2021) Synthesis, characterization and visible light-responsive photocatalysis properties of Ce doped CuO nanoparticles: A combined experimental and DFT+U study Colloids Surfaces A Physicochem Eng Asp 617:126386 https://doi.org/10.1016/j.colsurfa.2021.126386

  12. Kumawat A, Sharma A, Chattopadhyay S, Misra KP (2021) Temperature dependent photoluminescence in Sol-gel derived Ce doped ZnO nanoparticles. Mater Today Proc 43:2965–2969. https://doi.org/10.1016/j.matpr.2021.01.322

    Article  CAS  Google Scholar 

  13. Zhang Y, Wang C,  Zhao L, Liu F, Sun X, Hu X, Lu G (2021) Preparation of Ce-doped SnO2 cuboids with enhanced 2-butanone sensing performance, Sensors Actuators B Chem. 130039. https://doi.org/10.1016/j.snb.2021.130039.

  14. Sawant JP, Shaikh SF, Kale RB, Pathan HM (2020)Pathan, Chemical bath deposition of CuInS2 thin films and synthesis of CuInS2 nanocrystals: A review. Engineered Science 12:1–12. https://doi.org/10.30919/es8d1142.

  15. Kumar M, Chauhan MS, Akhtar MS, Umar A (2021) Effect of cerium ions in Ce-Doped ZnO nanostructures on their photocatalytic and picric acid chemical sensing. Ceram Int 47:3089–3098. https://doi.org/10.1016/j.ceramint.2020.09.145

    Article  CAS  Google Scholar 

  16. Kumar R, Umar A, Kumar G, Akhtar MS, Wang Y, Kim SH (2015) Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram Int 41:7773–7782. https://doi.org/10.1016/j.ceramint.2015.02.110

    Article  CAS  Google Scholar 

  17. Karunakaran C, Gomathisankar P, Manikandan G (2010) Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Mater Chem Phys 123:585–594. https://doi.org/10.1016/j.matchemphys.2010.05.019

    Article  CAS  Google Scholar 

  18. Liang YC, Lee CM, Lo YJ (2017) Reducing gas-sensing performance of Ce-doped SnO2 thin films through a cosputtering method. RSC Adv 7:4724–4734. https://doi.org/10.1039/c6ra25853k

    Article  CAS  Google Scholar 

  19. Gawali SR, Patil VL, Deonikar VG, Patil SS, Patil DR, Patil PS, Pant J (2018) Ce doped NiO nanoparticles as selective NO2 gas sensor. J Phys Chem Solids 114:28–35. https://doi.org/10.1016/j.jpcs.2017.11.005

    Article  CAS  Google Scholar 

  20. Liu X, Jiang L, Jiang X, Tian X, Sun X, Wang Y, He W, Hou P, Deng X, Xu X (2018) Synthesis of Ce-doped In2O3 nanostructure for gas sensor applications. Appl Surf Sci 428:478–484. https://doi.org/10.1016/j.apsusc.2017.09.177

    Article  CAS  Google Scholar 

  21. Wei D, Huang Z, Wang L, Chuai X, Zhang S, Lu G (2018) Hydrothermal synthesis of Ce-doped hierarchical flower-like In2O3 microspheres and their excellent gas-sensing properties. Sensors Actuators, B Chem 255:1211–1219. https://doi.org/10.1016/j.snb.2017.07.162

    Article  CAS  Google Scholar 

  22. Qi Z, Joshi TP, Liu R, Liu H, Qu J (2017) Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J Hazard Mater 329:193–204. https://doi.org/10.1016/j.jhazmat.2017.01.007

    Article  CAS  Google Scholar 

  23. Zhu L, Zeng W, Yang J, Li Y (2019) Unique hierarchical Ce-doped NiO microflowers with enhanced gas sensing performance. Mater Lett 251:61–64. https://doi.org/10.1016/j.matlet.2019.05.055

    Article  CAS  Google Scholar 

  24. Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Bazrafshan AA, Tayebi L (2019) Synthesis and application of Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of Basic Red 46 dye, Ultrason. Sonochem. 58:104702. https://doi.org/10.1016/j.ultsonch.2019.104702.

  25. Diao Q, Yin Y, Jia W, Xu X, Ding Y, Zhang X, Cao J, Yang K, Jiao M (2020) Highly sensitive ethanol sensor based on Ce-doped WO3with raspberry-like architecture Mater Res Express 7:115012 https://doi.org/10.1088/2053-1591/abcabf

  26. Ponnar M, Thangamani C, Monisha P, Gomathi SS, Pushpanathan K (2018) Influence of Ce doping on CuO nanoparticles synthesized by microwave irradiation method. Appl Surf Sci 449:132–143. https://doi.org/10.1016/j.apsusc.2018.01.126

    Article  CAS  Google Scholar 

  27. Aggrwal G, Salunke-Gawali S, Gejji SP, Nikalje M, Chakravarty D, Verma PL, Gosavi-Mirkute P, Harihar S, Jadhav M, Puranik VG (2021) Puranik. Reactions of 2,3-Dibromonaphthalene-1,4-Dione and Pyridyl Amines: X-ray Structures, DFT Investigations, and Selective Detection of the Hg2+ and Ni2+ Ions. Engineered Science, 14:78–93. https://doi.org/10.30919/es8d427.

  28. Chen S, Chen X, Xia T, Ma Q (2016) A novel electrochemiluminescence sensor for the detection of nitroaniline based on the nitrogen-doped graphene quantum dots. Biosens Bioelectron 85:903–908. https://doi.org/10.1016/j.bios.2016.06.010

    Article  CAS  Google Scholar 

  29. Nie Y, Liu Y, Su X, Ma Q (2019) Nitrogen-rich quantum dots-based fluorescence molecularly imprinted paper strip for p-nitroaniline detection. Microchem J 148:162–168. https://doi.org/10.1016/j.microc.2019.04.080

    Article  CAS  Google Scholar 

  30. Umar A, Ibrahim AA, Kumar R, Almas T, Al-Assiri MS, Baskoutas S (2019) Nitroaniline chemi-sensor based on bitter gourd shaped ytterbium oxide (Yb2O3) doped zinc oxide (ZnO) nanostructures. Ceram Int 45:13825–13831. https://doi.org/10.1016/j.ceramint.2019.04.079

    Article  CAS  Google Scholar 

  31. Sayyed SA, Beedri NI, Bhujbal PK, Shaikh SF, Pathan HM (2020) Pathan, Eosin Eosin-Y Sensitized Bi-layered ZnO Nanoflower-CeO2 Photoanode for Dye-Sensitized Solar Cells Application. ES Materials & Manufacturing 10:45–51. https://doi.org/10.30919/esmm5f939.

  32. Ibrahim AA, Umar A, Kumar R, Kim SH, Bumajdad A, Baskoutas S (2016) Sm2O3-doped ZnO beech fern hierarchical structures for nitroaniline chemical sensor. Ceram Int 42:16505–16511. https://doi.org/10.1016/j.ceramint.2016.07.061

    Article  CAS  Google Scholar 

  33. Palpandi K, Raman N (2020) Electrochemical detection of 2-nitroaniline at a novel sphere-like Co2SnO4 modified glassy carbon electrode. New J Chem 44:8454–8462. https://doi.org/10.1039/d0nj01098g

    Article  CAS  Google Scholar 

  34. Yamuna A, Jiang TY, Chen SM (2021) Preparation of K+ intercalated MnO2-rGO composite for the electrochemical detection of nitroaniline in industrial wastewater J Hazard Mater 411:125054 https://doi.org/10.1016/j.jhazmat.2021.125054

  35. Ahmed AI, Ahmad U, Baskoutas S (2017) Ytterbium doped zinc oxide nanopencils for chemical sensor application. J Nanosci Nanotechnol 17:9157–9162. https://doi.org/10.1166/jnn.2017.14702

    Article  CAS  Google Scholar 

  36. Umar A, Akhtar MS, Al-Assiri MS, Al-Salami AE, Kim SH (2018) Composite CdO-ZnO hexagonal nanocones: Efficient materials for photovoltaic and sensing applications. Ceram Int 44:5017–5024. https://doi.org/10.1016/j.ceramint.2017.12.098

    Article  CAS  Google Scholar 

  37. Umar A, Ammar HY, Kumar R, Almas T, Ibrahim AA, AlAssiri MS, Abaker M, Baskoutas S (2020) Efficient H2 gas sensor based on 2D SnO2 disks: Experimental and theoretical studies. Int J Hydrogen Energy 45:26388–26401. https://doi.org/10.1016/j.ijhydene.2019.04.269

    Article  CAS  Google Scholar 

  38. Kumar R, Umar A, Kumar R, Chauhan MS, Al-Hadeethi Y (2021) ZnO–SnO2 nanocubes for fluorescence sensing and dye degradation applications. Ceram Int 47:6201–6210. https://doi.org/10.1016/j.ceramint.2020.10.198

    Article  CAS  Google Scholar 

  39. Umar A, Ammar HY, Kumar R, Ibrahim AA, Al-Assiri MS (2019) Square disks-based crossed architectures of SnO2 for ethanol gas sensing applications—An experimental and theoretical investigation Sensors Actuators, B Chem 304:127352 https://doi.org/10.1016/j.snb.2019.127352

  40. Umar A, Kumar R, Akhtar MS, Kumar G, Kim SH (2015) Growth and properties of well-crystalline cerium oxide (CeO2) nanoflakes for environmental and sensor applications. J Colloid Interface Sci 454:61–68. https://doi.org/10.1016/j.jcis.2015.04.055

    Article  CAS  Google Scholar 

  41. Umar A, Almas T, Ibrahim AA, Kumar R, AlAssiri MS, Baskoutas S, Akhtar MS (2020) An efficient chemical sensor based on CeO2 nanoparticles for the detection of acetylacetone chemical J Electroanal Chem 864:114089 https://doi.org/10.1016/j.jelechem.2020.114089

  42. Al-Hadeethi Y, Umar A, Ibrahim AA, Al-Heniti SH, Kumar R, Baskoutas S, Raffah BM (2017) Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles, Ceram. Int. 43:6765–6770. https://doi.org/10.1016/j.ceramint.2017.02.088.

  43. Al-Hadeethi Y, Umar A, Al-Heniti SH, Kumar R, Kim SH, Zhang X, Raffah BM (2017) 2D Sn-doped ZnO ultrathin nanosheet networks for enhanced acetone gas sensing application. Ceram Int 43:2418–2423. https://doi.org/10.1016/j.ceramint.2016.11.031

    Article  CAS  Google Scholar 

  44. Lupan O, Chow L, Chai G, Schulte A, Park S, Heinrich H. (2009) A rapid hydrothermal synthesis of rutile SnO2 nanowires, Mater. Sci. Eng. B. 157:101–104. https://doi.org/10.1016/j.mseb.2008.12.035.

  45. Wu W, Zhang S, Zhou J, Xiao X, Ren F, Jiang C (2011) Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres: A template-and surfactant-free solution-phase route, the growth mechanism, optical properties, and application as a photocatalyst. Chem - A Eur J 17:9708–9719. https://doi.org/10.1002/chem.201100694

    Article  CAS  Google Scholar 

  46. Wang B, Sun L, Wang Y (2018) Template-free synthesis of nanosheets-assembled SnO2 hollow spheres for enhanced ethanol gas sensing, Mater. Lett. 218:290–294. https://doi.org/10.1016/j.matlet.2018.02.003.

  47. Ray A, Roy A, Ghosh M, Ramos-Ramón JA, Saha S, Pal U, Bhattacharya SK, Das S (2019) Study on charge storage mechanism in working electrodes fabricated by sol-gel derived spinel NiMn 2 O 4 nanoparticles for supercapacitor application, Appl. Surf. Sci. 463:513–525. https://doi.org/10.1016/j.apsusc.2018.08.259.

  48. Mariammal RN, Ramachandran K, Renganathan B, Sastikumar D (2012) On the enhancement of ethanol sensing by CuO modified SnO 2 nanoparticles using fiber-optic sensor. Sensors Actuators, B Chem 169:199–207. https://doi.org/10.1016/j.snb.2012.04.067

    Article  CAS  Google Scholar 

  49. Poloju M, Jayababu N, Manikandan E, Reddy MR (2017) Reddy, Enhancement of the isopropanol gas sensing performance of SnO2/ZnO core/shell nanocomposites, J. Mater. Chem. C. 5:2662–2668. https://doi.org/10.1039/C6TC05095F.

  50. Zargar RA, Bhat MA, Parrey IR, Arora M, Kumar J, Hafiz AK (2016) Optical properties of ZnO/SnO2 composite coated film, Opt. - Int. J. Light Electron Opt. 127:6997–7001. https://doi.org/10.1016/j.ijleo.2016.05.037.

  51. Wahab R, Ahmad N, Alam M, Ahmed J (2019) Nanorods of ZnO: An effective hydrazine sensor and their chemical properties. Vacuum. https://doi.org/10.1016/j.vacuum.2019.04.036

    Article  Google Scholar 

  52. Naito S, Yokoyama S, Asahara H, Nishiwaki N (2017) Synthesis of functionalized 4-nitroanilines by ring transformation of dinitropyridone with enaminones, Tetrahedron Lett. 58:4699–4702. https://doi.org/10.1016/j.tetlet.2017.11.003.

  53. Muniz-Miranda M, Neto N (2004) Surface-enhanced Raman scattering of π-conjugated “push-pull” molecules: Part I. p-Nitroaniline adsorbed on silver nanoparticles, in: Colloids Surfaces A Physicochem. Eng. Asp. 79–84. https://doi.org/10.1016/j.colsurfa.2004.08.070.

  54. Umar A, Akhtar MS, Dar GN, Abaker M, Al-Hajry A, Baskoutas S (2013) Visible-light-driven photocatalytic and chemical sensing properties of SnS2nanoflakes. Talanta 114:183–190. https://doi.org/10.1016/j.talanta.2013.03.050

    Article  CAS  Google Scholar 

  55. Algadi H, Mahata C, Kim S, Dalapati GK (2020) Improvement of Photoresponse Properties of Self-Powered ITO/InP Schottky Junction Photodetector by Interfacial ZnO Passivation, J. Electron. Mater. 1–7. https://doi.org/10.1007/s11664-020-08565-1.

  56. Algadi H, Mahata C, Sahoo B, Kim M, Koh WG, Lee T (2020) Facile method for the preparation of high-performance photodetectors with a GQDs/perovskite bilayer heterostructure, Org. Electron. 76. https://doi.org/10.1016/j.orgel.2019.105444.

  57.  Algadi H, Mahata C, Woo J, Lee M, Kim M, Lee T (2019) Enhanced photoresponsivity of all-inorganic (Cspbbr3) perovskite nanosheets photodetector with carbon nanodots (CDs), Electron. 8. https://doi.org/10.3390/electronics8060678.

Download references

Funding

The Deputy for Research and Innovation—Ministry of Education, Kingdom of Saudi Arabia, supported the research through a grant (NU/IFC/INT/01/004) under the institutional funding committee at Najran University, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Umar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, A., Kumar, R., Algadi, H. et al. Highly sensitive and selective 2-nitroaniline chemical sensor based on Ce-doped SnO2 nanosheets/Nafion-modified glassy carbon electrode. Adv Compos Hybrid Mater 4, 1015–1026 (2021). https://doi.org/10.1007/s42114-021-00283-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00283-4

Keywords

Navigation