Skip to main content
Log in

Experimental investigation of mechanical and machining parameters of hybrid nanoclay glass fiber-reinforced polyester composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this work, the effect of nanoclay addition to glass fiber-reinforced polyester composites is studied. The pristine glass fiber-reinforced polyester composites (i.e., staking sequence, kind of fabric used, etc.) and hybrid nanoclay in varying weight fraction (0, 1, 2, 3, 4 and 5 wt%) and glass fiber-reinforced polyester composite is prepared by vacuum-assisted resin infusion technique. Fracture toughness studies are done to analyze the critical stress intensity factor and critical strain energy release rate. The optimum mechanical properties are obtained for hybrid nanoclay glass fiber-reinforced polyester composites with clay content of 3 wt%. This paper also deals with the study of optimizing the cutting parameters (Cutting speed and feed rate) to obtain maximum mechanical properties in hybrid nanoclay glass fiber-reinforced polyester composites during drilling process. It has been found that the torque is unaffected with increase in cutting speed. On contrast with increase in feed and nanoclay weight fraction, the torque increases. The drilled samples are further subjected to mechanical testing. Tensile studies confirms that better mechanical properties are obtained for optimum machining parameter of (0.045 mm/rev, 210 rpm) for 3 wt% nanoclay and glass fiber-reinforced polyester nanocomposites. The hybrid clay and glass fiber-reinforced nanocomposites generally posses better mechanical properties compared with pristine glass fiber-reinforced polyester composites.

Optimum machining (drilling) parameters of hybrid nano clay – glass fiber reinforced polyester composites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang L, Zhong C (2013) Advanced engineering and biomimetic materials for bone repair and regeneration. Front Mater Sci 7(4):313–334

    Article  Google Scholar 

  2. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8(5):1179–1184

    Article  Google Scholar 

  3. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. J Polym Sci A Polym Chem 31(4):983–986

    Article  Google Scholar 

  4. Kornmann X, Lindberg H, Berglund LA (2001) Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer 42(4):1303–1310

    Article  Google Scholar 

  5. Usuki A, Kato M, Okada A, Kurauchi T (1997) Synthesis of polypropylene-clay hybrid. J Appl Polym Sci 63(1):137–138

    Article  Google Scholar 

  6. Kornmann X, Berglund LA, Sterte J, Giannelis EP (1998) Nanocomposites based on montmorillonite and unsaturated polyester. Polym Eng Sci 38(8):1351–1358

    Article  Google Scholar 

  7. Bharadwaj RK, Mehrabi AR, Hamilton C, Trujillo C, Murga M, Fan R, Chavira A, Thompson AK (2002) Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymer 43(13):3699–3705

    Article  Google Scholar 

  8. Manfredi LB, De Santis H, Vázquez A (2008) Influence of the addition of montmorillonite to the matrix of unidirectional glass fibre/epoxy composites on their mechanical and water absorption properties. Compos A: Appl Sci Manuf 39(11):1726–1731

    Article  Google Scholar 

  9. Angadi G, Murthy HN, Ramakrishna S, Firdosh S, Nagappa R, Munishamaiah K (2017) Effect of screw configuration on the dispersion of nanofillers in thermoset polymers. J Polym Eng 37(8):815–825

    Article  Google Scholar 

  10. Kornmann X, Rees M, Thomann Y, Necola A, Barbezat M, Thomann R (2005) Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. Compos Sci Technol 65(14):2259–2268

    Article  Google Scholar 

  11. Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Polymer/layered silicate nanocomposites as high performance ablative materials. Appl Clay Sci 15(1):67–92

    Article  Google Scholar 

  12. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis and properties of polyimide–clay hybrid. J Polym Sci A Polym Chem 31(10):2493–2498

    Article  Google Scholar 

  13. Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6(12):2216–2219

    Article  Google Scholar 

  14. Ma P, Nie X (2017) Interface improvement of multi axial warp-knitted layer composite with short glass fiber. Fibers and Polymers. 18(7):1413–1419

    Article  Google Scholar 

  15. Balaji A, Karthikeyan B, Sunder Raj C (2014) Bagasse fiber–the future biocomposite material: a review. Int J ChemTech Res 7(1):223–233

    Google Scholar 

  16. Lan T, Kaviratna PD, Pinnavaia TJ (1994) On the nature of polyimide-clay hybrid composites. Chem Mater 6(5):573–575

    Article  Google Scholar 

  17. Balaji A, Karthikeyan B, Swaminathan J, Raj CS (2017) Mechanical behavior of short bagasse fiber reinforced cardanol-formaldehyde composites. Fibers and Polymers 18(6):1193–1199

    Article  Google Scholar 

  18. Mulinari DR, Voorwald HJ, Cioffi MO, Da Silva ML, da Cruz TG, Saron C (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69(2):214–219

    Article  Google Scholar 

  19. Yuan X, Suong VH (2008) Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos Sci Technol 68:854–861

    Article  Google Scholar 

  20. Asaithambi B, Ganesan G, Kumar SA (2014) Bio-composites: development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites. Fibers Polymers 15(4):847–854

    Article  Google Scholar 

  21. Raghavendra N, Murthy HN, Krishna M, Mahesh KV, Sridhar R, Firdosh S, Angadi G, Sharma SC (2013) Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites. Front Mater Sci 7(4):396–404

    Article  Google Scholar 

  22. El-Sonbaty I, Khashaba UA, Machaly T (2004) Factors affecting the machinability of GFRP/epoxy composites. Compos Struct 63(3):329–338

    Article  Google Scholar 

  23. Davim JP, Reis P (2003) Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos Struct 59(4):481–487

    Article  Google Scholar 

  24. Wirawan R, Sapuan SM, Abdan K, Yunus RB (2011) Tensile and impact properties of sugarcane bagasse/poly (vinyl chloride) composites. Key Eng Mater 471:167–172

    Article  Google Scholar 

  25. Aymerich F, Dalla Via A, Quaresimin M (2011) Energy absorption capability of nanomodified glass/epoxy laminates. Procedia Engineering 10:780–785

    Article  Google Scholar 

  26. Capello E, Tagliaferri V (2001) Drilling damage of GFRP and residual mechanical behavior—part II: static and cyclic bearing loads. J Compos Technol Res 23(2):131–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, P., Mohamed Iqbal, S., Balaji, A. et al. Experimental investigation of mechanical and machining parameters of hybrid nanoclay glass fiber-reinforced polyester composites. Adv Compos Hybrid Mater 2, 93–101 (2019). https://doi.org/10.1007/s42114-018-0065-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0065-y

Keywords

Navigation