Anders, R., Riès, S., Van Maanen, L., & Alario, F. X. (2015). Evidence accumulation as a model for lexical selection. Cognitive Psychology, 82, 57–73. https://doi.org/10.1016/j.cogpsych.2015.07.002.
Article
PubMed
Google Scholar
Anders, R., Alario, F. X., & Van Maanen, L. (2016). The shifted Wald distribution for response time data analysis. Psychological Methods, 21(3), 309–327. https://doi.org/10.1037/met0000066.
Article
PubMed
Google Scholar
Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford UP.
Anderson, J. R., & Fincham, J. M. (2014). Discovering the sequential structure of thought. Cognitive Science, 38(2), 322–352. https://doi.org/10.1111/cogs.12068.
Article
PubMed
Google Scholar
Anderson, J. R., & Reder, L. M. (1999). The fan effect: new results and new theories. Journal of Experimental Psychology: General, 128(2), 186–197.
Article
Google Scholar
Anderson, J. R., Zhang, Q., Borst, J. P., & Walsh, M. M. (2016). The discovery of processing stages: extension of Sternberg’s method. Psychological Review, 123(5), 481–509. https://doi.org/10.1037/rev0000030.
Article
PubMed
PubMed Central
Google Scholar
Anderson, J. R., Borst, J. P., Fincham, J. M., Ghuman, A. S., Tenison, C., & Zhang, Q. (2018). The common time course of memory processes revealed. Psychological Science., 29, 1463–1474. https://doi.org/10.1177/0956797618774526.
Article
PubMed
PubMed Central
Google Scholar
Archambeau, K., De Visscher, A., Noël, M. P., & Gevers, W. (2019). Impact of ageing on problem size and proactive interference in arithmetic facts solving. Quarterly Journal of Experimental Psychology, 72(3), 446–456. https://doi.org/10.1177/1747021818759262.
Article
Google Scholar
Basar, E. (1980). EEG-brain dynamics: relation between EEG and brain evoked potentials. Elsevier/North-Holland Biomedical Press.
Berberyan, H. S. H. S., Van Maanen, L., van Rijn, H., & Borst, J. (2021). EEG-based identification of evidence accumulation stages in decision-making. Journal of Cognitive Neuroscience, 33(3), 510–527. https://doi.org/10.1162/jocn_a_01663.
Article
PubMed
Google Scholar
Blankertz, B., Lemm, S., Treder, M., Haufe, S., & Müller, K. R. (2011). Single-trial analysis and classification of ERP components - a tutorial. NeuroImage., 56, 814–825. https://doi.org/10.1016/j.neuroimage.2010.06.048.
Article
PubMed
Google Scholar
Boehm, U., Van Maanen, L., Forstmann, B. U., & Van Rijn, H. (2014). Trial-by-trial fluctuations in CNV amplitude reflect anticipatory adjustment of response caution. NeuroImage, 96, 95–105. https://doi.org/10.1016/j.neuroimage.2014.03.063.
Article
PubMed
Google Scholar
Bogacz, R., Wagenmakers, E.-J., Forstmann, B. U., & Nieuwenhuis, S. (2010). The neural basis of the speed–accuracy tradeoff. Trends in Neurosciences, 33(1), 10–16. https://doi.org/10.1016/j.tins.2009.09.002.
Article
PubMed
Google Scholar
Borst, J. P., & Anderson, J. R. (2015). The discovery of processing stages: analyzing EEG data with hidden semi-Markov models. Neuroimage, 108, 60–73.
Article
Google Scholar
Borst, J. P., & Anderson, J. R. (2021). Discovering cognitive stages in M/EEG data to inform cognitive models. In B. U. Forstmann & B. M. Turner (Eds.), An Introduction to Model-Based Cognitive Neuroscience (2nd ed.). Springer.
Borst, J. P., Schneider, D. W., Walsh, M. M., & Anderson, J. R. (2013). Stages of processing in associative recognition: evidence from behavior, EEG, and classification. Journal of Cognitive Neuroscience, 25(12), 2151–2166. https://doi.org/10.1162/jocn_a_00457.
Article
PubMed
Google Scholar
Borst, J. P., Ghuman, A. S., & Anderson, J. R. (2016). Tracking cognitive processing stages with MEG: a spatio-temporal model of associative recognition in the brain. NeuroImage., 141, 416–430. https://doi.org/10.1016/j.neuroimage.2016.08.002.
Article
PubMed
Google Scholar
Burle, B., Spieser, L., Servant, M., & Hasbroucq, T. (2014). Distributional reaction time properties in the Eriksen task: marked differences or hidden similarities with the Simon task? Psychonomic Bulletin and Review., 21, 1003–1010. https://doi.org/10.3758/s13423-013-0561-6.
Article
PubMed
Google Scholar
Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: the psychological refractory period and perfect time-sharing. Psychol Rev, 108(4), 847–869.
Article
Google Scholar
Clark, S. E., & Gronlund, S. D. (1996). Global matching models of recognition memory: how the models match the data. Psychonomic Bulletin and Review., 3, 37–60. https://doi.org/10.3758/BF03210740.
Article
PubMed
Google Scholar
Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A psychophysiological investigation of the continuous flow model of human information processing. Journal of Experimental Psychology: Human Perception and Performance. https://doi.org/10.1037/0096-1523.11.5.529.
Book
Google Scholar
Cox, G. E., & Criss, A. H. (2017). Parallel interactive retrieval of item and associative information from event memory. Cognitive Psychology, 97, 31–61. https://doi.org/10.1016/j.cogpsych.2017.05.004.
Article
PubMed
Google Scholar
Criss, A. H. (2010). Differentiation and response bias in episodic memory: evidence from reaction time distributions. J Exp Psychol Learn Mem Cogn, 36(2), 484–499. https://doi.org/10.1037/a0018435.
Article
PubMed
Google Scholar
Donders, F. C. (1868). Over de snelheid van psychische processen (pp. 92–120). II: Onderzoekingen Gedaan in Het Physiologisch Lbaoratorium Der Utrechtsche Hoogeschool.
Google Scholar
Donkin, C., & Van Maanen, L. (2014). Piéron’s law is not just an artifact of the response mechanism. Journal of Mathematical Psychology, 62–63, 22–32.
Article
Google Scholar
Forstmann, B. U., Dutilh, G., Brown, S. D., Neumann, J., von Cramon, D. Y., Ridderinkhof, K. R., & Wagenmakers, E.-J. (2008). Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences of the United States of America, 105, 17538–17542.
Article
Google Scholar
Forstmann, B. U., Anwander, A., Schäfer, A., Neumann, J., Brown, S. D., Wagenmakers, E.-J., Bogacz, R., & Turner, R. S. (2010). Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proceedings of the National Academy of Sciences of the United States of America, 107, 15916–15920.
Article
Google Scholar
Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annual Review of Psychology, 67, 641–666.
Article
Google Scholar
Gallivan, J. P., Chapman, C. S., Wolpert, D. M., & Flanagan, J. R. (2018). Decision-making in sensorimotor control. In Nature Reviews Neuroscience., 19, 519–534. https://doi.org/10.1038/s41583-018-0045-9.
Article
Google Scholar
Gayet, S., Van Maanen, L., Heilbron, M., Paffen, C. L. E., & Van der Stigchel, S. (2016). Visual input that matches the content of visual working memory requires less (not faster) evidence sampling to reach conscious access. Journal of Vision, 16(11), 26. https://doi.org/10.1167/16.11.26.
Article
PubMed
Google Scholar
Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91(1), 1–67. https://doi.org/10.1037/0033-295X.91.1.1.
Article
PubMed
Google Scholar
Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends Cogn Sci, 5(1), 10–16.
Article
Google Scholar
Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annu Rev Neurosci, 30, 535–574. https://doi.org/10.1146/annurev.neuro.29.051605.113038.
Article
PubMed
Google Scholar
Gray, W. D., & Ritter, F. E. (2007). Composition and control of integrated cognitive systems. In W. D. Gray (Ed.), Integrated Models of Cognitive Systems Oxford UP.
Chapter
Google Scholar
Gronlund, S. D., & Ratcliff, R. (1989). Time course of item and associative information: implications for global memory models. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/0278-7393.15.5.846.
Book
Google Scholar
Heathcote, A. (2004). Fitting wald and ex-Wald distributions to response time data: an example using functions for the S-PLUS package. Behav Res Methods Instrum Comput, 36(4), 678–694.
Article
Google Scholar
Heitz, R. P. (2014). The speed-accuracy tradeoff: history, physiology, methodology, and behavior. In Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2014.00150
Ho, T. C., Brown, S. D., Van Maanen, L., Forstmann, B. U., Wagenmakers, E.-J., & Serences, J. T. (2012). The optimality of sensory processing during the speed-accuracy tradeoff. J Neurosci, 32(23), 7992–8003. https://doi.org/10.1523/JNEUROSCI.0340-12.2012.
Article
PubMed
PubMed Central
Google Scholar
King, J. R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: the temporal generalization method. In Trends in Cognitive Sciences., 18, 203–210. https://doi.org/10.1016/j.tics.2014.01.002.
Article
Google Scholar
King, J. R., Pescetelli, N., & Dehaene, S. (2016). Brain mechanisms underlying the brief maintenance of seen and unseen sensory information. Neuron., 92, 1122–1134. https://doi.org/10.1016/j.neuron.2016.10.051.
Article
PubMed
Google Scholar
Kriete, T., Noelle, D. C., Cohen, J. D., & O’Reilly, R. C. (2013). Indirection and symbol-like processing in the prefrontal cortex and basal ganglia. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16390–16395. https://doi.org/10.1073/pnas.1303547110.
Article
PubMed
PubMed Central
Google Scholar
Liu, Y. (1996). Queueing network modeling of elementary mental processes. Psychological Review, 103(1), 116–136. https://doi.org/10.1037/0033-295X.103.1.116.
Article
PubMed
Google Scholar
Luce, R. D. (1986). Response Times Oxford UP.
Makeig, S., Westerfield, M., Jung, T. P., Enghoff, S., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. Science., 295, 690–694. https://doi.org/10.1126/science.1066168.
Article
PubMed
Google Scholar
Malmberg, K. J. (2008). Recognition memory: a review of the critical findings and an integrated theory for relating them. Cognitive Psychology., 57, 335–384. https://doi.org/10.1016/j.cogpsych.2008.02.004.
Article
PubMed
Google Scholar
Miletić, S., & Van Maanen, L. (2019). Caution in decision-making under time pressure is mediated by timing ability. Cognitive Psychology, 110, 16–29.
Article
Google Scholar
Miller, J. (1993). A queue-series model for reaction time, with discrete-stage and continuous-flow models as special cases. Psychological Review, 100(4), 702–715. https://doi.org/10.1037/0033-295X.100.4.702.
Article
PubMed
Google Scholar
Mulder, M. J., & Van Maanen, L. (2013). Are accuracy and reaction time affected via different processes? PLoS One, 8, e80222.
Article
Google Scholar
Mulder, M. J., Bos, D., Weusten, J. M. H., van Belle, J., van Dijk, S. C., Simen, P., van Engeland, H., & Durston, S. (2010). Basic impairments in regulating the speed-accuracy tradeoff predict symptoms of ADHD. Biological Psychiatry, 68, 1114–1119.
Article
Google Scholar
Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J Neurosci, 32(7), 2335–2343. https://doi.org/10.1523/JNEUROSCI.4156-11.2012.
Article
PubMed
PubMed Central
Google Scholar
Mulder, M. J., Keuken, M. C., Van Maanen, L., Boekel, W., Forstmann, B. U., & Wagenmakers, E.-J. (2013). The speed and accuracy of perceptual decisions in a random-tone pitch task. Attention, Perception & Psychophysics, 75, 1048–1058.
Article
Google Scholar
Mulder, M. J., Van Maanen, L., & Forstmann, B. U. (2014). Perceptual decision neurosciences - a model-based review. Neuroscience, 277, 872–884. https://doi.org/10.1016/j.neuroscience.2014.07.031.
Article
PubMed
Google Scholar
Murdock, B. B. (1993). TODAM2: A model for the storage and retrieval of item, associative, and serial-order information. Psychological Review., 100, 183–203. https://doi.org/10.1037/0033-295X.100.2.183.
Article
PubMed
Google Scholar
Neville, D., Raaijmakers, J. G. W., & Van Maanen, L. (2019). Modulation of the word frequency effect in recognition memory after an unrelated lexical decision task. Journal of Memory and Language, 108, 104026.
Article
Google Scholar
Norman, K. A. (2010). How hippocampus and cortex contribute to recognition memory: revisiting the complementary learning systems model. Hippocampus., 20, 1217–1227. https://doi.org/10.1002/hipo.20855.
Article
PubMed
PubMed Central
Google Scholar
Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychological Review., 110, 611–646. https://doi.org/10.1037/0033-295X.110.4.611.
Article
PubMed
Google Scholar
O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature Neuroscience., 15, 1729–1735. https://doi.org/10.1038/nn.3248.
Article
PubMed
Google Scholar
O’Reilly, R. C., & Norman, K. A. (2002). Hippocampal and neocortical contributions to memory: advances in the complementary learning systems framework. Trends in Cognitive Sciences, 6(11), 505–510.
Article
Google Scholar
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience https://doi.org/10.1155/2011/156869
Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus strength on the speed and accuracy of a perceptual decision. Journal of Vision, 5, 376–404 10:1167/5.5.1.
Article
Google Scholar
Portoles, O., Borst, J. P., & Van Vugt, M. (2018). Characterizing synchrony patterns across cognitive task stages of associative recognition memory. European Journal of Neuroscience, 48, 2759–2769.
Article
Google Scholar
Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88(2), 93–134.
Article
Google Scholar
Rae, B., Heathcote, A., Donkin, C., Averell, L., & Brown, S. D. (2014). The hare and the tortoise: Emphasizing speed can change the evidence used to make decisions. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40, 1–39. https://doi.org/10.1037/a0036801.
Article
Google Scholar
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.
Article
Google Scholar
Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychol Bull, 86(3), 446–461.
Article
Google Scholar
Ratcliff, R., & McKoon, G. (1989). Similarity information versus relational information: differences in the time course of retrieval. Cognitive Psychology., 21, 139–155. https://doi.org/10.1016/0010-0285(89)90005-4.
Article
PubMed
Google Scholar
Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922. https://doi.org/10.1162/neco.2008.12-06-420.
Article
PubMed
PubMed Central
Google Scholar
Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9, 347–356.
Article
Google Scholar
Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438–481.
Article
Google Scholar
Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: current issues and history. Trends in Cognitive Sciences, 20(4), 260–281. https://doi.org/10.1016/j.tics.2016.01.007.
Article
PubMed
PubMed Central
Google Scholar
Rinkenauer, G., Osman, A., Ulrich, R., Müler-Gethmann, H., & Mattes, S. (2004). On the locus of speed-accuracy trade-off in reaction time: Inferences from the lateralized readiness potential. Journal of Experimental Psychology: General. https://doi.org/10.1037/0096-3445.133.2.261.
Book
Google Scholar
Rotello, C. M., & Heit, E. (2000). Associative recognition: a case of recall-to-reject processing. Memory and Cognition., 28, 907–922. https://doi.org/10.3758/BF03209339.
Article
PubMed
Google Scholar
Rotello, C. M., MacMillan, N. A., & Van Tassel, G. (2000). Recall-to-reject in recognition: evidence from ROC curves. Journal of Memory and Language., 43, 67–88. https://doi.org/10.1006/jmla.1999.2701.
Article
Google Scholar
Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. In Trends in Cognitive Sciences., 11, 251–257. https://doi.org/10.1016/j.tics.2007.04.004.
Article
Google Scholar
Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: an integrated theory of concurrent multitasking. Psychological Review, 115(1), 101–130.
Article
Google Scholar
Schneider, D. W., & Anderson, J. R. (2012). Modeling fan effects on the time course of associative recognition. Cogn Psychol, 64(3), 127–160. https://doi.org/10.1016/j.cogpsych.2011.11.001.
Article
PubMed
Google Scholar
Schouten, J. F., & Bekker, J. A. (1967). Reaction time and accuracy. Acta Psychol (Amst), 27, 143–153.
Article
Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136.
Article
Google Scholar
Schweickert, R. (1989). Separable effects of factors on activation functions in discrete and continuous models: d′ and evoked potentials. Psychological Bulletin, 106(2), 318–328. https://doi.org/10.1037/0033-2909.106.2.318.
Article
PubMed
Google Scholar
Servant, M., White, C., Montagnini, A., & Burle, B. (2015). Using covert response activation to test latent assumptions of formal decision-making models in humans. Journal of Neuroscience., 35, 10371–10385. https://doi.org/10.1523/jneurosci.0078-15.2015.
Article
PubMed
Google Scholar
Servant, M., White, C., Montagnini, A., & Burle, B. (2016). Linking theoretical decision-making mechanisms in the Simon task with electrophysiological data: a model-based neuroscience study in humans. Journal of Cognitive Neuroscience., 28, 1501–1521. https://doi.org/10.1162/jocn_a_00989.
Article
PubMed
Google Scholar
Shah, A. S., Bressler, S. L., Knuth, K. H., Ding, M., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2004). Neural dynamics and the fundamental mechanisms of event-related brain potentials. Cerebral Cortex., 14, 476–483. https://doi.org/10.1093/cercor/bhh009.
Article
PubMed
Google Scholar
Spieser, L., Servant, M., Hasbroucq, T., & Burle, B. (2017). Beyond decision! Motor contribution to speed–accuracy trade-off in decision-making. Psychonomic Bulletin and Review, 24, 950–956. https://doi.org/10.3758/s13423-016-1172-9.
Article
PubMed
Google Scholar
Sternberg, S. (1969). The discovery of processing stages: extensions of Donders’ method. Acta Psychologica, 30, 276–315.
Article
Google Scholar
Sternberg, S. (2011). Modular processes in mind and brain. Cognitive Neuropsychology., 28, 156–208. https://doi.org/10.1080/02643294.2011.557231.
Article
PubMed
Google Scholar
Stewart, T. C., Bekolay, T., & Eliasmith, C. (2012). Learning to select actions with spiking neurons in the basal ganglia. Frontiers in Neuroscience 6 https://doi.org/10.3389/fnins.2012.00002
Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Conditional routing of information to the cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol Rev, 117(2), 541–574. https://doi.org/10.1037/a0019077.
Article
PubMed
PubMed Central
Google Scholar
Sudre, G., Pomerleau, D., Palatucci, M., Wehbe, L., Fyshe, A., Salmelin, R., & Mitchell, T. (2012). Tracking neural coding of perceptual and semantic features of concrete nouns. NeuroImage., 62, 451–463. https://doi.org/10.1016/j.neuroimage.2012.04.048.
Article
PubMed
Google Scholar
Thura, D., & Cisek, P. (2014). Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron, 81(6), 1401–1416. https://doi.org/10.1016/j.neuron.2014.01.031.
Article
PubMed
Google Scholar
Thura, D., & Cisek, P. (2016). Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-off. Journal of Neuroscience, 36, 938–956.
Article
Google Scholar
Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary perception: An investigation of parallel, serial, and coactive theories. Journal of Mathematical Psychology, 39(4), 321–359. https://doi.org/10.1006/jmps.1995.1033.
Article
Google Scholar
Van Maanen, L., & Van Rijn, H. (2007a). Accounting for subliminal priming in ACT-R. Proceedings of the 8th International Conference on Cognitive Modeling.
Van Maanen, L., & Van Rijn, H. (2007b). An accumulator model of semantic interference. Cognitive Systems Research, 8(3), 174–181. https://doi.org/10.1016/j.cogsys.2007.05.002.
Article
Google Scholar
Van Maanen, L., & Van Rijn, H. (2010). The locus of the Gratton effect in picture-word interference. Topics in Cognitive Science, 2(1), 168–180. https://doi.org/10.1111/j.1756-8765.2009.01069.x.
Article
PubMed
Google Scholar
Van Maanen, L., & Van Rijn, H. (2019). The observed locus of semantic interference may not coincide with the functional locus of semantic interference: a commentary on Shitova et al. Cortex, 111, 332. https://doi.org/10.1016/j.cortex.2018.10.025.
Article
Google Scholar
Van Maanen, L., Brown, S. D., Eichele, T., Wagenmakers, E.-J., Ho, T. C., Serences, J. T., & Forstmann, B. U. (2011). Neural correlates of trial-to-trial fluctuations in response caution. Journal of Neuroscience, 31, 17488–17495.
Article
Google Scholar
Van Maanen, L., Van Rijn, H., & Taatgen, N. A. (2012). RACE/A: an architectural account of the interactions between learning, task control, and retrieval dynamics. Cognitive Science, 36(1), 62–101. https://doi.org/10.1111/j.1551-6709.2011.01213.x.
Article
PubMed
Google Scholar
Van Maanen, L., Fontanesi, L., Hawkins, G. E., & Forstmann, B. U. (2016a). Striatal activation reflects urgency in perceptual decision making. Neuroimage, 139, 294–303.
Article
Google Scholar
Van Maanen, L., Forstmann, B. U., Keuken, M. C., Wagenmakers, E.-J., & Heathcote, A. (2016b). The impact of MRI scanner environment on perceptual decision-making. Behavior Research Methods, 48(1), 184–200. https://doi.org/10.3758/s13428-015-0563-6.
Article
PubMed
Google Scholar
Van Rijn, H., Borst, J. P., Taatgen, N., & Van Maanen, L. (2016). On the necessity of integrating multiple levels of abstraction in a single computational framework. Current Opinion in Behavioral Sciences, 11, 116–120. https://doi.org/10.1016/j.cobeha.2016.07.007.
Article
Google Scholar
Verdonck, S., & Tuerlinckx, F. (2016). Factoring out nondecision time in choice reaction time data: Theory and implications. Psychological Review, 123(2), 208–218. https://doi.org/10.1037/rev0000019.
Article
PubMed
Google Scholar
Vincent, S. B. (1912). The function of the viborissae in the behavior of the white rat. Behavioral Monographs, 1, 5.
Google Scholar
Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11(1), 192–196. https://doi.org/10.3758/BF03206482.
Article
Google Scholar
Wagenmakers, E.-J., Ratcliff, R., Gomez, P., & McKoon, G. (2008). A diffusion model account of criterion shifts in the lexical decision task. Journal of Memory and Language, 58, 140–159. https://doi.org/10.1016/j.jml.2007.04.006.
Article
PubMed
PubMed Central
Google Scholar
Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information-processing dynamics. Acta Psychologica, 41(1), 67–85.
Article
Google Scholar
Winkel, J., Van Maanen, L., Ratcliff, R., der Schaaf, M. E., Van Schouwenburg, M. R., Cools, R., & Forstmann, B. U. (2012). Bromocriptine does not alter speed-accuracy tradeoff. Frontiers in Decision Neuroscience, 6, 126.
Google Scholar
Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. Psychological Review., 114, 152–176. https://doi.org/10.1037/0033-295X.114.1.152.
Article
PubMed
Google Scholar
Wixted, J. T., & Stretch, V. (2004). In defense of the signal detection interpretation of remember/know judgments. Psychonomic Bulletin and Review., 11, 616–641. https://doi.org/10.3758/BF03196616.
Article
PubMed
Google Scholar
Yeung, N., Bogacz, R., Holroyd, C. B., & Cohen, J. D. (2004). Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods. Psychophysiology., 41, 822–832. https://doi.org/10.1111/j.1469-8986.2004.00239.x.
Article
PubMed
Google Scholar
Yeung, N., Bogacz, R., Holroyd, C. B., Nieuwenhuis, S., & Cohen, J. D. (2007). Theta phase resetting and the error-related negativity. Psychophysiology., 44, 39–49. https://doi.org/10.1111/j.1469-8986.2006.00482.x.
Article
PubMed
Google Scholar
Yonelinas, A. P. (2002). The nature of recollection and familiarity: a review of 30 years of research. In Journal of Memory and Language., 46, 441–517. https://doi.org/10.1006/jmla.2002.2864.
Article
Google Scholar
Yu, S. Z. (2010). Hidden semi-Markov models. Artificial Intelligence, 174(2), 215–243. https://doi.org/10.1016/j.artint.2009.11.011.
Article
Google Scholar
Zhang, Q., Walsh, M. M., & Anderson, J. R. (2017). The effects of probe similarity on retrieval and comparison processes in associative recognition. Journal of Cognitive Neuroscience., 29, 352–367. https://doi.org/10.1162/jocn_a_01059.
Article
PubMed
Google Scholar
Zhang, Q., van Vugt, M., Borst, J. P., & Anderson, J. R. (2018). Mapping working memory retrieval in space and in time: a combined electroencephalography and electrocorticography approach. NeuroImage., 174, 472–484. https://doi.org/10.1016/j.neuroimage.2018.03.039.
Article
PubMed
Google Scholar