Ahlheim, C., & Love, B.C. (2018). Estimating the functional dimensionality of neural representations. NeuroImage, 179, 51–62.
PubMed
PubMed Central
Google Scholar
Allefeld, C., & Haynes, J.D. (2014). Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA. NeuroImage, 89, 345–357.
PubMed
Google Scholar
Aly, M., Ranganath, C., Yonelinas, A.P. (2013). Detecting changes in scenes: the hippocampus is critical for strength-based perception. Neuron, 78(6), 1127–1137.
PubMed
PubMed Central
Google Scholar
Bartlett, M.S. (1951). The effect of standardization on a χ2 approximation in factor analysis. Biometrika, 38(3/4), 337–344.
Google Scholar
Bates, D., Maechler, M., Bolker, B., Walker, S. (2014). lme4: linear mixed-effects models using Eigen and S4. R package version, 1(7), 1–23.
Google Scholar
Bhandari, A., Gagne, C., Badre, D. (2018). Just above chance: is it harder to decode information from prefrontal cortex hemodynamic activity patterns? Journal of Cognitive Neuroscience, 30(10), 1473–1498.
PubMed
Google Scholar
Bracci, S., & de Beeck, H.O. (2016). Dissociations and associations between shape and category representations in the two visual pathways. Journal of Neuroscience, 36(2), 432–444.
PubMed
Google Scholar
Braunlich, K., & Love, B.C. (2018). Occipitotemporal representations reflect individual differences in conceptual knowledge. Journal of Experimental Psychology:, General, 148(7), 1192–1203.
Google Scholar
Brunelli, R., & Poggio, T. (1993). Face recognition: f versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10), 1042–1052.
Google Scholar
Charest, I., Kriegeskorte, N., Kay, K.N. (2018). GLMdenoise improves multivariate pattern analysis of fMRI data. NeuroImage, 183, 606–616.
PubMed
PubMed Central
Google Scholar
Coutanche, M.N., & Thompson-Schill, S.L. (2014). Creating concepts from converging features in human cortex. Cerebral Cortex, 25(9), 2584–2593.
PubMed
Google Scholar
Davis, T., & Poldrack, R.A. (2013). Quantifying the internal structure of categories using a neural typicality measure. Cerebral Cortex, 24(7), 1720–1737.
PubMed
Google Scholar
Davis, T., Xue, G., Love, B.C., Preston, A.R., Poldrack, R. a. (2014). Global neural pattern similarity as a common basis for categorization and recognition memory. Journal of Neuroscience, 34(22), 7472–7484.
PubMed
Google Scholar
Diedrichsen, J., & Kriegeskorte, N. (2017). Representational models: a common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Computational Biology, 13.4, e1005508.
Google Scholar
Diedrichsen, J., Ridgway, G.R., Friston, K.J., Wiestler, T. (2011). Comparing the similarity and spatial structure of neural representations: a pattern-component model. NeuroImage, 55(4), 1665–1678.
PubMed
PubMed Central
Google Scholar
Ennis, D.M., Palen, J.J., Mullen, K. (1988). A multidimensional stochastic theory of similarity. Journal of Mathematical Psychology, 32(4), 449–465.
Google Scholar
Fritsch, V., Varoquaux, G., Thyreau, B., Poline, J.-B., Thirion, B. (2012). Detecting outliers in high-dimensional neuroimaging datasets with robust covariance estimators. Medical Image Analysis, 16(7), 1359–1370.
PubMed
Google Scholar
Gardella, C., Marre, O., Mora, T. (2018). Blindfold learning of an accurate neural metric. Proceedings of the National Academy of Sciences, 115(13), 3267–3272.
Google Scholar
Gentner, D., & Markman, A.B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45.
Google Scholar
Goldstone, R.L. (1994). The role of similarity in categorization: providing a groundwork. Cognition, 52(2), 125–157.
PubMed
Google Scholar
Guest, O., & Love, B.C. (2017). What the success of brain imaging implies about the neural code. Elife, 6, e21397.
PubMed
PubMed Central
Google Scholar
Hahn, U., Chater, N., Richardson, L.B. (2003). Similarity as transformation. Cognition, 87(1), 1–32.
PubMed
Google Scholar
Hanke, M., Halchenko, Y.O., Sederberg, P.B., Hanson, S.J., Haxby, J.V., Pollmann, S. (2009). PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7(1), 37–53.
PubMed
PubMed Central
Google Scholar
Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O., Conroy, B.R., Gobbini, M.I., Hanke, M., Ramadge, P.J. (2011). A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron, 72(2), 404–416.
PubMed
PubMed Central
Google Scholar
Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(2), 181–197.
PubMed
Google Scholar
Hothorn, T., Bretz, F., Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal:, Journal of Mathematical Methods in Biosciences, 50(3), 346–363.
Google Scholar
Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M. (2012). Fsl. Neuroimage, 62(2), 782–790.
PubMed
Google Scholar
Jennrich, R.I. (1970). An asymptotic χ2 test for the equality of two correlation matrices. Journal of the American Statistical Association, 65(330), 904–912.
Google Scholar
Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: open source scientific tools for Python. http://www.scipy.org/. [Online; accessed 16-09-2019].
Kiani, R., Esteky, H., Mirpour, K., Tanaka, K. (2007). Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. Journal of Neurophysiology, 97(6), 4296–4309.
PubMed
Google Scholar
Kriegeskorte, N., Mur, M., Bandettini, P. (2008a). Representational similarity analysis - connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2(November), 4.
Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., Bandettini, P.A. (2008b). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 1126–1141.
Krumhansl, C.L. (1978). Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychological Review, 85(5), 445–463.
Google Scholar
LaRocque, K.F., Smith, M.E., Carr, V.A., Witthoft, N., Grill-Spector, K., Wagner, A.D. (2013). Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory. Journal of Neuroscience, 33(13), 5466–5474.
PubMed
Google Scholar
Mack, M.L., Love, B.C., Preston, A.R. (2016). Dynamic updating of hippocampal object representations reflects new conceptual knowledge. Proceedings of the National Academy of Sciences, 113(46), 13203–13208.
Google Scholar
Mack, M.L., Preston, A.R., Love, B.C. (2013). Decoding the brain’s algorithm for categorization from its neural implementation. Current Biology, 23(20), 2023–2027.
PubMed
Google Scholar
Markman, A.B., Maddox, W.T., Worthy, D.A., Markman, B. (2006). Excelling under choking pressure. Psychological Science, 17(11), 944–948.
PubMed
Google Scholar
Medin, D.L., Goldstone, R.L., Gentner, D. (1993). Respects for similarity. Psychological Review, 100(2), 254.
Google Scholar
Mihalcea, R., Corley, C., Strapparava, C. (2006). Corpus-based and knowledge-based measures of text semantic similarity. AAAI, 6, 775–780.
Google Scholar
Mumford, J.A., Turner, B.O., Ashby, F.G., Poldrack, R.A. (2012). Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. Neuroimage, 59(3), 2636–2643.
PubMed
Google Scholar
Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., Kriegeskorte, N. (2014). A toolbox for representational similarity analysis. PLoS Computational Biology, 10(4), e1003553.
PubMed
PubMed Central
Google Scholar
Nosofsky, R.M. (1992). Similarity scaling and cognitive process models. Annual Review of Psychology, 43(1), 25–53.
Google Scholar
Palmeri, T.J., & Gauthier, I. (2004). Visual object understanding. Nature Reviews Neuroscience, 5(4), 291.
PubMed
Google Scholar
Pavlov, I.P., & Anrep, G.V. (2003). Conditioned reflexes. Courier Corporation.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. (2011). Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.
Google Scholar
Persson, M., & Rieskamp, J. (2009). Inferences from memory: strategy- and exemplar-based judgment models compared. Acta Psychologica, 130(1), 25–37.
PubMed
Google Scholar
Pothos, E.M., Busemeyer, J.R., Trueblood, J.S. (2013). A quantum geometric model of similarity. Psychological Review, 120(3), 679.
PubMed
Google Scholar
Ramirez, F.M., Cichy, R.M., Allefeld, C., Haynes, J. -D. (2014). The neural code for face orientation in the human fusiform face area. Journal of Neuroscience, 34(36), 12155–12167.
PubMed
Google Scholar
Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L. (2000). New support vector algorithms. Neural Computation, 12(5), 1207–1245.
PubMed
Google Scholar
Shepard, R.N. (1964). Attention and the metric structure of the stimulus space. Journal of Mathematical Psychology, 1(1), 54–87.
Google Scholar
Soucy, E.R., Albeanu, D.F., Fantana, A.L., Murthy, V.N., Meister, M. (2009). Precision and diversity in an odor map on the olfactory bulb. Nature Neuroscience, 12(2), 210–220.
PubMed
Google Scholar
Spence, K.W. (1952). The nature of the response in discrimination learning. Psychological Review, 59(1), 89.
PubMed
Google Scholar
Tenenbaum, J.B., & Griffiths, T.L. (2001). Generalization, similarity and Bayesian inference. Behavioral and Brain Sciences, 24(4), 629–640.
PubMed
Google Scholar
Turner, B., Miletić, S., Forstmann, B. (2018). Outlook on deep neural networks in computational cognitive neuroscience. Neuroimage, 180, 117–118.
PubMed
Google Scholar
Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327.
Google Scholar
Tyler, L.K., Moss, H., Durrant-Peatfield, M., Levy, J. (2000). Conceptual structure and the structure of concepts: a distributed account of category-specific deficits. Brain and Language, 75(2), 195–231.
PubMed
Google Scholar
van Rossum, M.C.W. (2001). A novel spike distance. Neural Computation, 13(4), 751–763.
PubMed
Google Scholar
Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., Diedrichsen, J. (2016). Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroImage, 137(0), 188–200.
PubMed
Google Scholar
Weber, M., Thompson-Schill, S.L., Osherson, D., Haxby, J., Parsons, L. (2009). Predicting judged similarity of natural categories from their neural representations. Neuropsychologia, 47(3), 859–868.
PubMed
Google Scholar
Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y. (2003). Distance metric learning with application to clustering with side-information. In: Advances in neural information processing systems (pp. 521–528).
Xue, G., Dong, Q., Chen, C., Lu, Z., Mumford, J.A., Poldrack, R.A. (2010). Greater neural pattern similarity across repetitions is associated with better memory. Science, 330(6000), 97–101.
PubMed
PubMed Central
Google Scholar
Yamins, D.L.K., & DiCarlo, J.J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356.
PubMed
Google Scholar