Skip to main content
Log in

Contamination of potable water supply sources in the lead–zinc mining communities of Mkpuma Akpatakpa, Southeastern Nigeria

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

Mining for lead–zinc, and associated minerals has been going on for decades in the Mkpuma Akpatakpa area, and the release of accumulated metallic trace elements (MTEs) and potentially harmful elements (PHEs) is unavoidable. The Atomic Absorption Spectrophotometric method was used to analyze potable water supply sources in communities via mine tailings, stream sediments, mine wastewater discharge, impounded pond water, rivers, streams, and groundwater sources. This is to assess the effects of mining and mineralization in the area, as well as the concentrations of MTEs and PHEs in public and domestic water supply sources. Surface water sources, including mine ponds and rivers, had high levels of Pb, Cr, Hg, Ni, Cd, Zn, Fe, Mn, and As, surpassing the drinking water threshold, especially in the mining zones and downstream. High quantities of Pb, Mn, Cd, Ag, Hg, Co, As, and Fe (upstream and downstream) were found in groundwater sources, exceeding drinking water limits. This shows that mineralization has had a significant impact in the area. High quantities of Zn, Cu, Pb, Cd, and As were found in mine tailings and stream sediments, respectively, as well as Zn, Cd, As, and Pb. Both anthropogenic and geogenic factors are responsible for the contamination in the area. A pipe-borne water supply is needed to alleviate the health status of the inhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham, M. R., & Susan, T. B. (2017). Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality. Chemosphere, 169, 281–287.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (1986). Trace elements in the terrestrialenvironment. Springer- Verlag.

    Book  Google Scholar 

  • Agency for Toxic Substances and Disease Registry, (ATSDR). (2007). U.S. Department of Health and Human Services, Public Health Service, Division of Toxicology 1600, Atlanta, GA 30333

  • Aghamelu, O. P., Nnabo, P. N., & Ezeh, H. N. (2011). Geotechnical and environmental problems related to shales in the Abakaliki area, Southeastern Nigeria. African Journal of Environmental Science and Technology, 5(2), 80–88.

    CAS  Google Scholar 

  • Agumanu, A. E. (1989). The Abakaliki and Ebonyi formation subdivision of the Albian, Asu River Group in Southern Benue Trough, Nigeria. Journal of African Earth Science, 1(10), 195–207.

    Article  Google Scholar 

  • Akakuru, O. C., Akudinobi, B., Opara, A. I., Onyekuru, S. O., & Akakuru, O. U. (2021). Hydrogeochemical facies and pollution status of groundwater resources of Owerri and environs, Southeastern Nigeria. Environmental Monitoring and Assessment, 193, 623. https://doi.org/10.1007/s10661-021-09364-9

    Article  CAS  Google Scholar 

  • Akakuru, O. C., Eze, C. U., Okeke, O. C., Opara, A. I., Usman, A. O., Iheme, O. K., Ibeneme, S. I., & Iwuoha, P. O. (2022). Hydrogeochemical evolution, water quality indices, irrigation suitability and pollution index of groundwater (PIG) around Eastern Niger Delta, Nigeria. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-021-00162-0

    Article  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (20th ed.). American Public HealthAssociation.

    Google Scholar 

  • American Public Health Association (APHA). (1998). Direct Air- Acetylene flame method, standard method of water and wastewater 20th edn.

  • Autier, V., & White, D. (2004). Examination of cadmium sorption characteristics for aboreal soil near Fairbanks, Alaska. Journal of Hazard Material, 106B, 149–155.

    Article  CAS  Google Scholar 

  • Barton, E. N., Gilbert, D. T., & Raju, K. (1992). Arsenic: The forgotten poison? West Indian Medical Journal, 41(1), 36–38.

    CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). The Geochemistry of acid mine drainage. In B. S. Lollar (Ed.), Treatise on geochemistry (Vol. 9, pp. 149–204). Elsevier Ltd.

    Chapter  Google Scholar 

  • Brikké, F. (2000). Operation and maintenance of rural water supply and sanitation systems: a training package for managers and planners. Delft, IRC International Water and Sanitation Centre; and Geneva, World Health Organization.

  • Boulanger, A., & Gorman, A., (2014). Hardrock Mining: Risks to CommunityHealthenvironmentportal.in/files/MiningHealthReport_WVE-done.pdf -47 p.

  • Boyle, R. W. (1968).Geochemistry of silver and its deposit notes on geochemicalprospecting for the element. Geological Survey of Canada. Ottawa, Ont: Canada, Department of Energy, Mines and Resources. 160, pp. l–96.

  • Burt, R., Weber, T., Park, S., Yochum, S., & Fergusson, R. (2011). Trace element concentration and speciation in selected mining- contaminated soils and water in Willow Creek flood plain, Colorado. Applied Environmental Soil Science. https://doi.org/10.1155/2011/237071

    Article  Google Scholar 

  • Burke, K. C., Dessawvagia, R. F. J., & Whiteman, A. W. (1972). Geology history of the Benue Valley and Adjacent Area, Africa Geology, University of Ibadan Press. Geology, 10(5), 187–206.

    Google Scholar 

  • Chukwu, A., & Obiorah, S. C. (2014). Whole- rock Geochemistry of Basic and Intermediate rocks in Ishiagu area: Further evidence of Anorogenic setting of the Lower Benue Rift, Southern Nig. Turkish Journal of Earth Science, 23, 427–443.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Robinson, B. H., Schulin, R., & Nowack, B. (2008). Metal extractability in acidic and neutral mine tailings from the Cartagena- La Union Mining district (SE Spain). Applied Geochemistry, 23, 1232–1240.

    Article  CAS  Google Scholar 

  • Davies, B. E., Bowman, C., Davies, T. C. & Sellinus, O. (2005). Medical Geology: Perspectives and Prospects. Essent. Med. Geol., Elsevier Inc., pp.1–14.

  • DHHS. (1995). Report to congress on workers’ home contamination study conducted under the workers’ family protection act (29 U.S.C. 671a). Cincinnati, OH: U.S. Department of health and human services, Public health service, Centers for disease control and prevention, National institute for occupational safety and health. Pub no. 95–123. PB96192000.

  • El Amari, K., Valera, P., Hibti, M., Pretti, S., Marcello, A., & Essarraj, S. (2014). Impact of mine tailings on surrounding soils and ground water: case of Kettara old mine, Morocco. Journal of African Earth Science, 100, 437e449.

    Google Scholar 

  • Elinder, C. G. (1985). Cadmium: Uses, occurrence and intake. In L. Friberg, C. G. Elinder, & T. Kjellström (Eds.), Cadmium and health: A toxicological and epidemiological appraisal. Vol. I. Exposure, dose, and metabolism. Effects and response (pp. 23–64). CRC Press.

    Google Scholar 

  • Elinder, C. G. (1992). Cadmium as an environmental hazard. IARC Science Publications, 118, 123–132.

    Google Scholar 

  • Environmental Protection Agency (EPA). (2003c). Effluent guidelines and standards.General provisions.Toxic pollutants.Washington D.C. U.S EPA.40 CFR 401. 15.

  • Environmental Protection Agency (EPA). (1979). Water-related environmental fate of 129 priority pollutants. Washington, DC: U.S. Environmental Protection Agency, Office of Water Planning and Standards. (EPA) 440479029a.

  • Environmental Protection Agency (EPA). (2005). Emissions of arsenic compounds. Technology transfer network. National air toxics assessment. pollutant-specific data tables. U.S

  • Essa (1999) Agency for Toxic Substances and Disease Registry (ATSDR) (2007). U.S. Department of Health and Human Services, Public Health Service, Division of Toxicology 1600, Atlanta, GA 30333.

  • Eyankware, M. O., & Obasi, P. N. (2021). A holistic review of heavy metals in water and soil in Ebonyi SE. Nigeria; with emphasis on its effects on human, aquatic organisms and plants. World News of Natural Science, 38, 1–19.

    CAS  Google Scholar 

  • Eyankware, M. O., Igwe, E. O., & Onwe, M. O. (2021). Geochemical study using geochemical modelling approach in Ojekwe region of southern Benue Trough, Nigeria. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-021-00163-z

    Article  Google Scholar 

  • Eyankware, M. O., Akakuru, C. O., & Eyankware, E. O. (2022a). Interpretation of hydrochemical data using various geochemical models: a case study of Enyigba mining district of Abakaliki Ebonyi state, SE, Nigeria. Sustainable Water Resources Management. https://doi.org/10.1007/s40899-022-00613-4

    Article  Google Scholar 

  • Eyankware, M. O., Akakuru, C. O., Ulakpa, R. O. E., & Eyankware, E. O. (2022b). Hydrogeochemical approach in the assessment of coastal aquifer for domestic, industrial, and agricultural utilities in Port Harcourt urban, southern Nigeria. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-022-00184-2

    Article  Google Scholar 

  • Farm Unit, Ebonyi State University (EBSU). (2009). Climatologically Data of the Abakaliki Area (unpublished). pp 22–26.

  • FDA. (1987). U.S Food and Drug Administration, code of federal regulations. 21 CFR 73. 199.21 CFR 73. 2991.

  • Fergussion, I. E. (1990). The heavy elements chemistry, environmental impact and health effects. Pergamon Press.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1976). Groundwater Water Assessment (pp. 248–261). Prentice- Hall Englewood Cliffs.

    Google Scholar 

  • Gundersen, P., & Steinnes, E. (2003). Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers. Water Resources, 37, 307–318.

    CAS  Google Scholar 

  • Gunsinger, M. R., Ptacek, C. J., Blowes, D. W., & Jambor, J. L. (2006). Evaluation of the long term sulphide oxidation processes within pyrrhotite – rich tailings, Lynn Lake, Manitoba. Journal of Contaminant Hydrology, 83, 149–170.

    Article  CAS  Google Scholar 

  • Gerhat, J. M., & Blomquist, J. D. (1992). Selected Trace Elements and Organic Contaminant in Stream Bed Sediments of the Potomac River Basin. U.S. Geological Survey, Water Resources Investigation Report 95 – 4267, pp. 1–12.

  • Guo, K., Liu, Y. F., Zeng, C., Chen, Y. Y., & Wei, X. J. (2014). Global research on soil contamination from 1999 to 2012: A bibliometric analysis. Acta Agriculturae Scandivia Section B Soil & Plant Science, 64(5), 377–391.

    CAS  Google Scholar 

  • Hans, K. W. (1995). The composition of the continental crust. Geochimica Et Cosmochimica Acta, 59(7), 1217–1232.

    Article  Google Scholar 

  • Hartwig, T., Owor, M. A., Zachmann, D., & Pohl, W. (2005). Lake George as a sink for contaminants derived from Kilembe copper mining area, Western Uganda. Mine Water and Environment, 24, 114–124.

    Article  CAS  Google Scholar 

  • Hems, J. D. (1989). Study and Interpretation of the chemicalcharacteristics of natural water, water supply paper 2254, 3rd, United States geological survey, p. 263.

  • Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution insome French forest soils: evidence for atmospheric contamination. Science Total Environment, 312(13), 195e219.

    Google Scholar 

  • Howard, G., & Bartram, J. (2003). Domestic water quantity, service level and health World Health Organization.

    Google Scholar 

  • HSDB. (2001). Hazardous Substances Data Bank. National Library of Medicine, Bethesda, MD.

  • IARC. (1980). Arsenic and arsenic compounds. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Vol. 23. Some metals and metallic compounds. Lyon, France: International Agency for Research on Cancer, pp. 39–141.

  • IARC. (2004). Overall evaluations of carcinogenicity to humans: As evaluated in IARC Monographs volumes 1–82 (at total of 900 agents, mixtures and exposures). Lyon, France: International Agency for Research on Cancer.

  • Igwe, O., Adepehin, E. J., Iwuanyanwu, C., & Una, C. O. (2014). Risks associated with the mining of Pb – Zn minerals in some parts of the Southern Benue Trough, Nigeria. Environmental Monitoring and Assessment, 186, 3755–3765.

    Article  CAS  Google Scholar 

  • Iloeje, N. P. (1979). A new geography of Nigeria. Revised New Edition, pp. 32–45.

  • IOM. (2002). Dietary reference intake of vit A, vit K, arsenic, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Institute of Medicine, food and nutrition board, NRC. Washington D.C. National Academy Press, pp. 442–501.

  • IPCS. (1994). Assessing human health risks of chemicals: Derivation of guidance values for healthbased exposure limits (p. 170). World Health Organization, International ProgrammeonChemical Safety (Environmental Health Criteria.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace Elements in Soil and Plants (3rd ed.). CRC Press.

    Google Scholar 

  • Khalil, A., Hanich, L., Bannari, A., Zouhri, L., Pourret, O., & Hakkou, R. (2012). Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models. Journal of Geochemical Exploration, 125, 117–129.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Haung, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.

    Article  CAS  Google Scholar 

  • Khan, S., Rehman, S., Khan, A. Z., Khan, M. A., & Shah, M. T. (2010). Soils and vegetables enrichment with heavy metals from geological sources in Gilgit, Northern Pakistan. Ecotoxicology Environmental Safety, 73, 1820–1827.

    Article  CAS  Google Scholar 

  • Kribek, B. (2013). Recommendations for the collection and processing of samples when assessing the degree and extent of contamination of surface and ground waters, stream sediments, soils, and vegetation in areas affected by mining and mineral processing in countries of Sub – Saharan Africa. Unpublished Report. SIDA Project planning Meeting, 2013. Prague, Czech Republic, p. 16.

  • Kogbe, C. A. (1976). Palegeographic History of Nigeria from Albian times. In C. A. Kogbe (Ed.), Geology of Nig (pp. 237–252). Elizabeth Publishers.

    Google Scholar 

  • Kimball, B.A., Runkel, R.L., Walton-Day, K., & Bencala, K. E. (2002). Assessment of Metal Loads in Watersheds Affected by Acid Mine Drainage by Using Tracer Injection and Synoptic Sampling: Cement Creek, Colorado, USA.

  • Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Article  Google Scholar 

  • Lu, Z., Yu, X., & Huang, Q. (2014). Effect of mining waste water on drinking water quality and tumor mortality of villagers. Journal of Environmental Health, 21(5), 303e304.

    Google Scholar 

  • Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., Luo, W., & Wang, T. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5e15.

    Article  CAS  Google Scholar 

  • Lucassen, E., Smolders, A. J. P., & Roelofs, J. G. M. (2002). Potential sensitivity of mines to drought, acidification and mobilization of heavy metals: The sediment S/Ca +Mg) ratio as diagnostic tool. Environmental Pollution, 120, 635–646.

    Article  CAS  Google Scholar 

  • Mann, H., Fyfe, W. S., & Kerrich, R. (1989). Retardation of toxic heavy metal dispersion from nickel-copper mine tailings, Sudbury district, Ontario: Role of acidophilic microorganisms. I Biological Pathway of Metal Retardation. Biorecovery, 1, 155–172.

    CAS  Google Scholar 

  • Martinez- Martinez, S., Acosta, J. A., Fascano, A., Carnoma, D. M., Zornoza, R., & Cerda, C. (2013). Assessment of the lead and zinc content in natural soils and tailing ponds from the Cartagana – La Union mining district SE Spain. Journal of Geochemical Exploration, 124, 166–175.

    Article  CAS  Google Scholar 

  • Meili, M. (2013). The coupling of mercury and organic matter in the biogeochemical cycle - towards a mechanistic model for the boreal forest zone. Water Air Soil Pollution, 56, 333–347.

    Article  Google Scholar 

  • Montgomery, C. W. (2000). Environmental Geology (5th ed., p. 546p). McGraw Hill.

    Google Scholar 

  • Moreno- Jimenez, E., Penalosa, J. M., Manzano, R., Carpena- Riuz, R. O., Gamarra, R., & Esteban, E. (2009). Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid Spain and their transference to wideflora. Journal of Hazard Material, 162, 854–859.

    Article  CAS  Google Scholar 

  • Moye, J., Picard-Lesteven, T., Zouhri, L., El Amari, K., Hibti, M., & Benkaddour, A. (2017). Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco). Environmental Pollution, 231(Pt 1), 899–907.

    Article  CAS  Google Scholar 

  • Munk, L. A., Gunter, F., Douglas, F., Jerry, P., & Bigham, M. (2002). Sorption of trace metals to analuminum precipitate in a stream receiving acid rock – drainage; Snake River Summit County Colorado. Applied Geochemistry, 1(421), 430.

    Google Scholar 

  • Musah, S. N., Maxiwel, A., & Boateng, A. (2013). Health risks of heavy metals in selected crops cultivated in small-scale- gold- mining areas in Wassa- Amenfi- west district of Ghana. Journal of National Science Research, 3(5), 2224–3186.

    Google Scholar 

  • Nidhi, G., Pankaj, P., & Jakir, H. (2017). Effect of physicochemical and biological parameters on the qualityof river water of Narmada, Madhya Pradesh, India. Water Science, 31(2017), 11–23.

    Google Scholar 

  • Nieto, J. M., Sarmiento, A., Olfas, M., Canovas, C. R., Riba, I., Kalman, J., & Delvalls, T. A. (2007). Acid mine Drainage pollution in the Tinto and Odiel rivers (Iberian pyrite belt, SW Spain) and bioavailability of the transported metals to theHuelva estuary. Environment International, 33, 445–456.

    Article  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Nwachukwu, S. O. (1975). Temperature of formation of vein, minerals in the south portion of the Benue Trough, Nigeria. Journal of Mining Geology, 11, 44–55.

    Google Scholar 

  • Nwajide, C. S. (2013). Geology of Nigeria’s Sedimentary Basins (p. 256). CSS Bookshops Limited.

    Google Scholar 

  • Obasi, P. N., & Akudinobi, B. E. B. (2015). Geochemical Assessment of Heavy Metal Distribution and Pollution Status in Soil/Stream Sediment in the Ameka Mining Area of Ebonyi State, Nigeria. African Journal of Geo-Science Research, 3(4), 01–07.

    Google Scholar 

  • Obasi, P. N., Akudinobi, B. E. B., Eyankware, M. O., & Nweke, O. M. (2015). Hydrochemical Investigation of Water Resources Around Mkpuma Ekwaoku Mining District, Ebonyi State Southeastern Nigeria. African Journal of Geo-Science Research, 3(3), 01–07.

    Google Scholar 

  • Obasi, P. N. (2017). Hydrogeological and Geochemical Assessment of the Lead – Zinc Mining Areas of Abakaliki Ebonyi State, Southeastern Nigeria. Unpublished Ph. D Thesis. NnamdiAzikiwe University, Awka, Nigeria.

  • Obasi, P. N., & Akudinobi, B. E. B. (2020). Potential health risk and levels of heavy metals in water resources of lead- zinc mining communities of Abakaliki Southeast Nigeria. Springer - Applied Water Science. https://doi.org/10.1007/s40808-020-00800-2

    Article  Google Scholar 

  • Obasi, P. N. (2020). Occurrence and Distribution of Heavy Metals in Arable Soils Around Lead- Zinc Mining Sites of Abakaliki Southeast Nigeria. Springer- Modelling Earth Systems and Environment. https://doi.org/10.1007/s40808-020-00800-2

    Article  Google Scholar 

  • Obasi, P.N., & Akudinobi, B.E.B. (2019a). Heavy Metals Occurrence, Assessment and Distribution in Water Resources in the Lead- Zinc Mining Areas of Abakaliki, Southeastern Nigeria. Springer - International Journal of Environmental Science and Technology https://doi.org/10.1007/s13762-019-02489-y

  • Obasi, P. N., & Akudinobi, B.E.B. (2019b). Pollution Status of arable Soil and Stream Sediment in the Mining Areas of Abakaliki, Lower Benue Trough. Springer - International Journal of Environmental Science and Technology https://doi.org/10.1007/s13762-019-02337-z

  • Obasi, P. N., Eyankware, M. O., & Akudinobi, B. E. B. (2021). Characterization and evaluation of the effects of mine discharges on surface water resources for irrigation a case study of the Enyigba Mining District Southeast Nigeria. Applied Water Science. https://doi.org/10.1007/s13201-021-01400-w

    Article  Google Scholar 

  • Obasi, P. N., Akakuru, O. C., Nweke, O. M., & Okolo, C. M. (2022). Groundwater assessment and contaminant migration in fractured shale aquifers of abakaliki mining areas, Southeast Nigeria. Journal of Mining and Geology, 58(1), 211–227

  • Obage, G. N. (2009). Geology and mineral resources of Nigeria. Springer.

    Book  Google Scholar 

  • Obarezi, J. E., & Nwosu, J. I. (2013). Structural controls of Pb-Zn mineralization of Enyigba district, Abakaliki, Southeastern Nigeria. Journal of Geology and Mining, 5(11), 250–261.

    Article  CAS  Google Scholar 

  • Obiorah, S. C., Chukwu, A., & Davies, T. C. (2015). Heavy metals and health risk assessment of arable soils and food crops around Pb- Zn mining localities in Enyigba, Southeastern Nigeria. Journal of African Earth Science, 116(2016), 182–189.

    Google Scholar 

  • Obiorah, S. C., Chukwu, A., Toteu, S. F., & Davies, T. C. (2016). Assessment of Heavy metals Contamination in soils around Pb- Zn mining Areas in Enyigba, Southeastern Nigeria. Journal of GeologicalSociety of India, 87, 453–462.

    Article  CAS  Google Scholar 

  • Obiorah, S. C., Chukwu, A., Toteu, S. F., & Davies, T. C. (2018). Contamination of the potable water supply sources in the Lead – Zinc mining Communities of Enyigba, Southeastern Nigeria. Mine Water and the Environment. https://doi.org/10.1007/s10230-018-0550-0

    Article  Google Scholar 

  • Oti, J. O., & Nwabue, I. (2013). Heavy metals effect due to contamination of vegetables from Enyigba Lead Mine in Ebonyi State, Nigeria. Environmental Pollution, 2(1), 19–26.

    Google Scholar 

  • Owor, M., Hartwig, T., Muwanga, A., Zachmann, D., & Pohl, W. (2007). Impact of tailings from the Kilembe copper mining district on lake George, Uganda. Environmental Geology, 51(1065), 1075.

    Google Scholar 

  • Peters, S. W., & Ekweozor, C. M. (1982). Petroleum Geology of the Benue Trough and Southeastern Chad Basin, Nigeria. Bulletin American Association of Petroleum Geologist, 66, 1141–1149.

    Google Scholar 

  • Ramakrishnaiah, C. R., Sadashivaiah, C., & Ranganna, G. (2009). Assessment of water quality Index for the groundwater in Tumkur Taluk, Karnataka State, India. Journal of Chemistry, 6(2), 523–530.

    CAS  Google Scholar 

  • Rai, P. K., Leeb, S. S., Zhang, M., Tsangd, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385.

    Article  CAS  Google Scholar 

  • Reyment, R. A. (1965). Aspects of the Geology of Nigeria (p. 144). University of Ibadan Press.

    Google Scholar 

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): An assessment os metal pollution. Marine Pollution Bulletin, 40, 968–1075.

    Article  CAS  Google Scholar 

  • Santosh, M., Avvannavar, S., & S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring and Assessment, 143, 279–290.

    Article  CAS  Google Scholar 

  • Shah, A. K., & Geeta, J. S. (2015). Evaluation of water quality index for River Sabarmati, Gujarat, India. Applied Water Science, 7, 1349–1358.

    Article  CAS  Google Scholar 

  • Stoessel, (2004). Concentration of heavy metals in soils around mine sites in China lake province. Journal of Environmental Science, 3(24):230–244.

  • Umeji, A. C. (2000). Evolution of the Abakaliki and the Anambra Basins, Southeastern Nigeria. A report submitted to the Shell Petroleum Development Company, Nigeria Limited, p. 155.

  • Wiscons in department for natural resources. (2011). Chapter 19: Transmission losses. National engineering handbook, Part 630, Hydrology, Washington, D.C.

  • World Health Organization (WHO). (2011). Guidelines for Drinking water quality Third edition Geneva.

  • Yisa, J., & Jimoh, T. (2010). Analytical Studies on water quality Index of River Landzu. America Journal Applied Science, 7(4), 453–458.

    Article  CAS  Google Scholar 

  • Zaborski, P. M. (1998). A review of the Cretaceous System in Nigeria. African Geoscience Review, 5(4), 385–483.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Obasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obasi, P.N., Eyankware, M.O. & Edene, E. . Contamination of potable water supply sources in the lead–zinc mining communities of Mkpuma Akpatakpa, Southeastern Nigeria. Int J Energ Water Res (2022). https://doi.org/10.1007/s42108-022-00199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42108-022-00199-9

Keywords

Navigation