Skip to main content
Log in

Prediction model for compressive strength of rice husk ash blended sandcrete blocks using a machine learning models

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Sandcrete blocks are popular for construction but their production relies on cement, which is a major contributor to greenhouse gases. Rice husk ash (RHA), a waste product, can partially replace cement in sandcrete blocks. This study uses machine learning (ML) to predict the compressive strength of these blocks, which is influenced by factors such as the ratio of fine aggregate to binder, RHA to binder ratio, water-to-binder ratio, and curing time. The data were collected from published literature on factors affecting compressive strength from various sources and analyzed 795 observations. The analysis showed that strength increases with longer curing but decreases with higher ratios of aggregate-to-binder, RHA-to-binder, and water-to-binder. The data were divided for training and testing ML models. Five algorithms were investigated, and the eXtreme Gradient Boosting (XGB) model emerged as the best for predicting compressive strength. The XGB model strongly correlated with predicted and measured strength, with an R2 value of 0.94 for training data and 0.89 for testing data. It also displayed lower error metrics compared to other models. XGB's success is due to its ability to handle complex relationships and prevent overfitting. This study highlights the potential of ML for predicting the strength of RHA-blended sandcrete blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akanbi, O. A., Amiri, I. S., & Fazeldehkordi, E. (2015). Chapter 3 - Research Methodology. In O. A. Akanbi, I. S. Amiri, & E. Fazeldehkordi (Eds.), A Machine-Learning Approach to Phishing Detection and Defense (pp. 35–43). Syngress.

    Chapter  Google Scholar 

  • Amran, M., Fediuk, R., Murali, G., Vatin, N., Karelina, M., Ozbakkaloglu, T., Krishna, R. S., Sahoo, A. K., Das, S. K., & Mishra, J. (2021). Rice husk ash-based concrete composites: a critical review of their properties and applications. Crystals. https://doi.org/10.3390/cryst11020168

    Article  Google Scholar 

  • Anburuvel, A., Sathiparan, N., Dhananjaya, G. M. A., & Anuruththan, A. (2023). Characteristic evaluation of geopolymer based lateritic soil stabilization enriched with eggshell ash and rice husk ash for road construction: An experimental investigation. Construction and Building Materials, 387, 131659.

    Article  Google Scholar 

  • Antiohos, S. K., Papadakis, V. G., & Tsimas, S. (2014). Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness. Cement and Concrete Research, 61–62, 20–27.

    Article  Google Scholar 

  • Anžel, A., Heider, D., & Hattab, G. (2023). Interactive polar diagrams for model comparison. Computer Methods and Programs in Biomedicine, 242, 107843.

    Article  Google Scholar 

  • Bassi, A., Manchanda, A., Singh, R., & Patel, M. (2023). A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete. Natural Hazards, 118, 209–238.

    Article  Google Scholar 

  • Belaïd, F. (2022). How does concrete and cement industry transformation contribute to mitigating climate change challenges? Resources. Conservation & Recycling Advances, 15, 200084.

    Article  Google Scholar 

  • Dolage, D. A. R., Mylvaganam, K., Mayoorathan, P., & Inparatnam, S. (2011). Use of rice husk ash blended cement to produce cement sand blocks: Optimal level of cement replacement for compressive strength. Engineer, 44, 11–19.

    Article  Google Scholar 

  • Emeka, O. H., & Lawrence, O. (2021). Compressive strength of sandcrete containing rice husk ash obtained from different calcinations methods. International Refereed Journal of Engineering and Science, 6, 71–74.

    Google Scholar 

  • Ettu, L. O., Ajoku, C. A., Nwachukwu, K. C., Awodiji, C. T. G., & Eziefula, U. G. (2013). Strength variation of OPC-rice husk ash composites with percentage rice husk ash. International Journal of Applied Sciences and Engineering Research, 2, 420–424.

    Google Scholar 

  • Fapohunda, C., Akinbile, B., & Shittu, A. (2017). Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review. International Journal of Sustainable Built Environment, 6, 675–692.

    Article  Google Scholar 

  • Feng, D.-C., Liu, Z.-T., Wang, X.-D., Chen, Y., Chang, J.-Q., Wei, D.-F., & Jiang, Z.-M. (2020). Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Construction and Building Materials, 230, 117000.

    Article  Google Scholar 

  • Gao, W., Karbasi, M., Derakhsh, A. M., & Jalili, A. (2019). Development of a novel soft-computing framework for the simulation aims: A case study. Engineering with Computers, 35, 315–322.

    Article  Google Scholar 

  • Gowda, M. R., Narasimhan, M. C., & Karisiddappa, n.,. (2011). Development and study of the strength of self-compacting mortar mixes using local materials. Journal of Materials in Civil Engineering, 23, 526–532.

    Article  Google Scholar 

  • Huang, Y., Lei, Y., Luo, X., & Fu, C. (2023). Prediction of compressive strength of rice husk ash concrete: A comparison of different metaheuristic algorithms for optimizing support vector regression. Case Studies in Construction Materials, 18, e02201.

    Article  Google Scholar 

  • Jamil, M., Kaish, A. B. M. A., Raman, S. N., & Zain, M. F. M. (2013). Pozzolanic contribution of rice husk ash in cementitious system. Construction and Building Materials, 47, 588–593.

    Article  Google Scholar 

  • Jamil, M., Khan, M. N. N., Karim, M. R., Kaish, A. B. M. A., & Zain, M. F. M. (2016). Physical and chemical contributions of Rice Husk Ash on the properties of mortar. Construction and Building Materials, 128, 185–198.

    Article  Google Scholar 

  • Jittin, V., Bahurudeen, A., & Ajinkya, S. D. (2020). Utilisation of rice husk ash for cleaner production of different construction products. Journal of Cleaner Production, 263, 121578.

    Article  Google Scholar 

  • Kashem, A., Karim, R., Das, P., Datta, S. D., & Alharthai, M. (2024). Compressive strength prediction of sustainable concrete incorporating rice husk ash (RHA) using hybrid machine learning algorithms and parametric analyses. Case Studies in Construction Materials, 20, e03030.

    Article  Google Scholar 

  • Kaveh, A., Dadras Eslamlou, A., Javadi, S. M., & Geran Malek, N. (2021). Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mechanica, 232, 921–931.

    Article  Google Scholar 

  • Kaveh, A., & Khavaninzadeh, N. (2023a). Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength. Structures, 52, 256–272.

    Article  Google Scholar 

  • Kaveh, A., & Khavaninzadeh, N. (2023b). Hybrid ECBO–ANN Algorithm for Shear Strength of Partially Grouted Masonry Walls. Periodica Polytechnica Civil Engineering, 67, 1176–1186.

    Google Scholar 

  • Kaveh, A., Mohammad Javadi, S., & Mahdipour Moghani, R. (2022). Shear Strength Prediction of FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework. Periodica Polytechnica Civil Engineering, 66, 18–29.

    Google Scholar 

  • Kaveh, A., & Zolghadr, A. (2014). Democratic PSO for truss layout and size optimization with frequency constraints. Computers & Structures, 130, 10–21.

    Article  Google Scholar 

  • Khan, W., Fahim, M., Zaman, S., Khan, S. W., Badrashi, Y. I., & Khan, F. (2021). Use of Rice Husk Ash as Partial Replacement of Cement in Sandcrete Blocks. Adv. Sci. Technol. Res. J., 15, 101–107.

    Article  Google Scholar 

  • Kumar Das, S., Adediran, A., Rodrigue Kaze, C., Mohammed Mustakim, S., & Leklou, N. (2022). Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties. Construction and Building Materials, 345, 128341.

    Article  Google Scholar 

  • Mahasenan, N., Smith, S., & Humphreys, K. (2003). The Cement Industry and Global Climate Change: Current and Potential Future Cement Industry CO2 Emissions. In J. Gale & Y. Kaya (Eds.), Greenhouse Gas Control Technologies - 6th International Conference (pp. 995–1000). Pergamon.

    Chapter  Google Scholar 

  • Malami, S. I., Musa, A. A., Haruna, S. I., Aliyu, U. U., Usman, A. G., Abdurrahman, M. I., Bashir, A., & Abba, S. I. (2022). Implementation of soft-computing models for prediction of flexural strength of pervious concrete hybridized with rice husk ash and calcium carbide waste. Modeling Earth Systems and Environment, 8, 1933–1947.

    Article  Google Scholar 

  • Marani, A., & Nehdi, M. L. (2020). Machine learning prediction of compressive strength for phase change materials integrated cementitious composites. Construction and Building Materials, 265, 120286.

    Article  Google Scholar 

  • Mayooran, S., Ragavan, S., & Sathiparan, N. (2017). Comparative study on open air burnt low- and high-carbon rice husk ash as partial cement replacement in cement block production. Journal of Building Engineering, 13, 137–145.

    Article  Google Scholar 

  • Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022a). Fundamentals of Artificial Neural Networks and Deep Learning. In O. A. Montesinos López, A. Montesinos López, & J. Crossa (Eds.), Multivariate Statistical Machine Learning Methods for Genomic Prediction (pp. 379–425). Springer International Publishing.

    Chapter  Google Scholar 

  • Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022b). Support Vector Machines and Support Vector Regression. In O. A. Montesinos López, A. Montesinos López, & J. Crossa (Eds.), Multivariate Statistical Machine Learning Methods for Genomic Prediction (pp. 337–378). Springer International Publishing.

    Chapter  Google Scholar 

  • Nandurkar, B. P., & Pande, A. M. (2018). Compressive strength of mortars containing fly ash and rice husk ash. International Journal of Civil Engineering and Technology, 9, 1012–1020.

    Google Scholar 

  • Nasir Amin, M., Iftikhar, B., Khan, K., Faisal Javed, M., Mohammad AbuArab, A., & Faisal Rehman, M. (2023). Prediction model for rice husk ash concrete using AI approach: Boosting and bagging algorithms. Structures, 50, 745–757.

    Article  Google Scholar 

  • Nilantha, B.G.P., Jiffry, I., Kumara, Y.S., Subashi, G.H.M.J., 2010. Structural and thermal performances of rice husk ash (RHA) based sand cement block, Internationla Conference on Sustainable Built Environment (ICSBE-2010), Kandy, Sri Lanka, pp. 138–144.

  • Okpala, D. C. (1993). Some engineering properties of sandcrete blocks containing rice husk ash. Building and Environment, 28, 235–241.

    Article  Google Scholar 

  • Olaiya, B. C., Lawan, M. M., & Olonade, K. A. (2023). Utilization of sawdust composites in construction—a review. SN Applied Sciences, 5, 140.

    Article  Google Scholar 

  • Oyetola, E. B., & Abdullahi, M. (2006). The use of rice husk ash in low - cost sandcrrete block production. Leonardo Electronic Journal of Practices and Technologies, 8, 58–70.

    Google Scholar 

  • Paul, S., Das, P., Kashem, A., & Islam, N. (2024). Sustainable of rice husk ash concrete compressive strength prediction utilizing artificial intelligence techniques. Asian Journal of Civil Engineering, 25, 1349–1364.

    Article  Google Scholar 

  • Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, 53, 1468–1485.

    Article  Google Scholar 

  • Potty, N. S., Vallyutham, K., Yusoff, M. F., Anwar, A., Haron, M. F., & Aliasm, M. N. (2014). Properties of rice husk ash (RHA and MIRHA) mortars. Research Journal of Applied Sciences, Engineering and Technology, 7, 3872–3882.

    Article  Google Scholar 

  • Rahman, M. A. (1987). Use of rice husk ash in sandcrete blocks for masonry units. Materials and Structures, 20, 361–366.

    Article  Google Scholar 

  • Raihan, M. J., & Nahid, A.-A. (2023). Chapter 3 - Classification of histopathological colon cancer images using particle swarm optimization-based feature selection algorithm. In K. Polat & S. Öztürk (Eds.), Diagnostic Biomedical Signal and Image Processing Applications with Deep Learning Methods (pp. 61–82). Academic Press.

    Chapter  Google Scholar 

  • Sathiparan, N., & Jeyananthan, P. (2023a). Predicting compressive strength of cement-stabilized earth blocks using machine learning models incorporating cement content, ultrasonic pulse velocity, and electrical resistivity. Nondestructive Testing and Evaluation. https://doi.org/10.1080/10589759.2023.2240940

    Article  Google Scholar 

  • Sathiparan, N., & Jeyananthan, P. (2023b). Prediction of masonry prism strength using machine learning technique: Effect of dimension and strength parameters. Materials Today Communications, 35, 106282.

    Article  Google Scholar 

  • Sathiparan, N., Jeyananthan, P., & Subramaniam, D. N. (2023). Effect of aggregate size, aggregate to cement ratio and compaction energy on ultrasonic pulse velocity of pervious concrete: prediction by an analytical model and machine learning techniques. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-023-00790-3

    Article  Google Scholar 

  • Siddika, A., Mamun, M. A. A., Alyousef, R., & Mohammadhosseini, H. (2021). State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. Journal of King Saud University - Engineering Sciences, 33, 294–307.

    Article  Google Scholar 

  • Subashi De Silva, G. H. M. J., Vishvalingam, S., & Etampawala, T. (2021). Effect of waste rice husk ash from rice husk fuelled brick kilns on strength, durability and thermal performances of mortar. Construction and Building Materials, 268, 121794.

    Article  Google Scholar 

  • Subramaniam, D. N., Jeyananthan, P., & Sathiparan, N. (2023). Soft computing techniques to predict the electrical resistivity of pervious concrete. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-023-00806-y

    Article  Google Scholar 

  • Subramaniam, D. N., & Sathiparan, N. (2022). Comparative study of fly ash and rice husk ash as cement replacement in pervious concrete: mechanical characteristics and sustainability analysis. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2022.2075867

    Article  Google Scholar 

  • Thomas, B. S. (2018). Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 3913–3923.

    Article  Google Scholar 

  • Wijekoon, S. H., Shajeefpiranath, T., Subramaniam, D. N., & Sathiparan, N. (2023). A mathematical model to predict the porosity and compressive strength of pervious concrete based on the aggregate size, aggregate-to-cement ratio and compaction effort. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-023-00757-4

    Article  Google Scholar 

  • Xu, Y., Liu, S., & Heisel, F. (2024). Towards sustainable construction waste management: Study on a disassemblable brick partition wall for the architecture, construction, and engineering industry. Circular Economy, 3, 100078.

    Article  Google Scholar 

  • Zerbino, R., Giaccio, G., & Isaia, G. C. (2011). Concrete incorporating rice-husk ash without processing. Construction and Building Materials, 25, 371–378.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

N.S: Conceptualization, Data curation, Machine learning modelling, Analysis, Writing - original draft All authors reviewed the manuscript.

Corresponding author

Correspondence to Navaratnarajah Sathiparan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiparan, N. Prediction model for compressive strength of rice husk ash blended sandcrete blocks using a machine learning models. Asian J Civ Eng (2024). https://doi.org/10.1007/s42107-024-01077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42107-024-01077-x

Keywords

Navigation