Skip to main content
Log in

Simplified models to control plastic hinges in reinforced concrete frame structures

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Researchers using structural analysis software (design software) like SAP2000® state that the plastic hinge length (L p) can be calculated based on analytical formulae, and is considered constant during the loading procedure. However, this datum varies and depends on several parameters. A first study is carried out using (SAP2000®.V14) to assess the influence of L p on the hinges response. The results show that the influence is not negligible, and the results are not unique, because they depend on L p. This code calculates the plastic rotation by multiplying L p by the plastic curvature for the hinges behavior assessment. In this connection, a better approach to control these plastic hinges has been developed using CASTEM2000, to calculate the plastic rotations, based on an integral calculus of curvature field along the length of the plasticized zone. Numerical investigations are carried out to control the plastic hinge appearance and positioning, as well as to get the corresponding L p. This study aims at proposing a new simplified finite-element model able to consider the nonlinear behavior of reinforced concrete frames. The predicted load–displacement results are confronted and validated by experimental ones. The assessed L p at failure were in good agreement with those predicted using the analytical formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Adapted from Takeda model Arêde (1997)

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akhaveissy, A. H., & Desai, C. S. (2012). Application of the DSC model for nonlinear analysis of reinforced concrete frame. Finite Elements in Analysis and Design, 50, 98–107.

    Article  Google Scholar 

  • Alfarah, B., López-Almansa, F., & Oller, S. (2017). New methodology for calculating damage variables evolution in plastic damage model for RC structures. Engineering Structures, 132, 70–86.

    Article  Google Scholar 

  • Arêde, A. (1997). Seismic Assessment of reinforced concrete frame structures with a new flexibility based element (Ph.D, Dissertation). Porto University, Portugal.

  • ATC-40. (1996). Seismic evaluation end retrofit of concrete building, Report No.SSC 96-01, Redwood City, CA, USA, November, 1996.

  • Bae, S., & Bayrak, O. (2008). Plastic hinge length of reinforced concrete columns. ACI Structural Journal, 3(105), 290–300.

    Google Scholar 

  • Bai, J., & Ou, J. (2011). Seismic failure mode improvement of RC frame structure based on multiple lateral load patterns of pushover analyses. Science China Technological Sciences, 11(54), 2825–2833.

    Article  Google Scholar 

  • Baker, A. L. L., & Amarakone, A. M. N. (1964). Inelastic hyperstatic frame analysis. ACI Structural Journal, SP-12, 85–142.

    Google Scholar 

  • Baker, A. L. L., et al. (1956). Ultimate load theory applied to the design of reinforced and prestressed concrete frames (p. 91). London: Concrete Publications Ltd.

    Google Scholar 

  • Bathe, K. J., & Wilson, E. L. (1976). Numerical methods in finite element analysis. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Bayrak, O., & Sheikh, S. A. (1998). Confinement reinforcement design considerations for ductile HSC columns. Journal of Structural Division ASCE, 9(124), 999–1010.

    Article  Google Scholar 

  • Bentz, E. C. (2000) Sectional analysis of reinforced concrete members (Ph.D. Thesis). University of Toronto, Portugal.

  • Berry, M. P., Lehman, D. E., & Lowes, L. N. (2008). Lumped-plasticity models for performance simulation of bridge columns. ACI Structural Journal, 3(105), 270–279.

    Google Scholar 

  • Calabrese, A., Almeida, J. P., & Pinho, R. (2010). Numerical issues in distributed inelasticity modeling of RC frame elements for seismic analysis. Journal of Earthquake Engineering, 1(14), 38–68.

    Article  Google Scholar 

  • Carr, A. J. (2007) Ruaumoko manual, Department of Civil Engineering, University of Canterbury, New Zealand.

  • Combescure, D. (2001). Modélisation des structures de génie civil sous chargement sismique à l’aide de CASTEM 2000, Report DM2S, Commissariat à l’Energie Atomique, France, March, 2001.

  • Computers & Structures Inc. (2011). CSI analysis reference manual for SAP2000®, ETABS®, and SAFE™. http://docs.csiamerica.com/manuals/misc/CSI%20Analysis%20Reference%20Manual%202011-12.pdf. Accessed 10 Nov 2015.

  • Corley, W. G. (1966). Rotational capacity of reinforced concrete beams. Journal of Structural Division ASCE, ST 5, 92, 121–146.

    Google Scholar 

  • Davidovici, V. (2003). Séisme de Boumerdes du 21 mai 2003, Rapport préliminaire du Ministère de l’Habitat, Rapport de Mission, Dynamique Concept, 23 Juillet 2003.

  • Douglas, K. T., Davidison, B. J., Fenwilk, R. C. (1996). Modeling of reinforced concrete plastic hinges. Eleventh World Conference on Earthquake Engineering (11WCEE), International Association for Earthquake Engineering, Acapulco, Mexico, Paper No. 468, 23–28 June, 1996.

  • Eurocode 8. (2004). Design for earthquake resistance, part 1: general rules, seismic actions and rules for buildings, European standard EN 1998-1, European Committee for Standardization (CEN), Brussels, 2004.

  • Faleiro, J., Barbat, A., & Oller, S. (2005). Plastic damage model for non linear reinforced concrete frames analysis. International Conference on Computational Plasticity, CIMNE, Barcelona, Spain, May, 2005.

  • Faleiro, J., Oller, S., & Barbat, A. H. (2008). Plastic–damage seismic model for reinforced concrete frame. Computers & Structures, 86, 581–597.

    Article  Google Scholar 

  • FEMA-237. (1997). NEHRP guidelines for the seismic rehabilitation of buildings, Building Seismic Safety Council, Washington DC, USA, October, 1997.

  • Filippou, F. C., & Fenves, G. L. (2004). Methods of analysis for earthquake-resistant structures, chapter 6. In Earthquake engineering: from engineering seismology to performance-based engineering. Boca Raton: CRC press.

  • Ghaffarzadeh, H., Talebian, N., & Kohandel, R. (2013). Seismic demand evaluation of medium ductility RC moment frames using nonlinear procedures. Earthquake Engineering and Engineering Vibration, 12, 399–409.

    Article  Google Scholar 

  • Guedes, J., Pegon, P., Pinto, A. (1994). A fiber/Timoshenko beam element in Castem 2000, Italy: Special publication Nr. I.94.31, Applied Mechanics Unit, Institute for Safety Technology, Joint Research Centre, Commission of the European Communities, I-21020 ISPRA (VA).

  • Güner, S. (2008). Performance assessment of shear-critical reinforced concrete plane frames (PhD. Thesis). University of Toronto, Canada.

  • Herbert, A., & Sawyer, J. R. (1964). Design of concrete frames for two failure stages. ACI Structural Journal, SP-12, 405–437.

    Google Scholar 

  • Jukic, M., Brank, B., & Ibrahimbegovic, A. (2014). Failure analysis of reinforced concrete frames by beam finite element that combines damage, plasticity and embedded discontinuity. Engineering Structures, 75, 507–527.

    Article  Google Scholar 

  • Kahil, A., Nekmouche, A., Boukais, S., et al. (2017). Effect of RC wall on the development of plastic rotation in the beams of RC frame structures. Frontiers of Structural and Civil Engineering. https://doi.org/10.1007/s11709-017-0420-z.

    Google Scholar 

  • Kezmane, A., Boukais, S., & Hamizi, M. (2013). Optimization of the reinforcement positioning in the squat reinforcement concrete walls. International Journal of Engineering and Technology, 5(5), 635–640.

    Article  Google Scholar 

  • Kezmane, A., Boukais, S., & Hamizi, M. (2014). Semi empirical equation for peak shears strength of rectangular reinforced concrete walls with aspect ratio less or equal to one. Applied Mechanics and Materials, 578–579, 974–978.

    Article  Google Scholar 

  • Kezmane, A., Boukais, S., & Hamizi, M. (2016a). Numerical simulation of squat reinforced concrete walls strengthened by FRP composite material, Front. Struct. Civil Engineering, 4(10), 445–455.

    Google Scholar 

  • Kezmane, A., Chiaia, B., Kumpyak, O., Maksimov, V., & Placidi, L. (2016b). 3D modeling of reinforced concrete slab with yielding supports subject to impact load. European Journal of Environmental and Civil Engineering, 21, 988–1025.

    Article  Google Scholar 

  • López-Almansa F, Alfarah B, Oller S. (2014). Numerical simulation of RC frame testing with damaged plasticity model, comparison with simplified models. Second European Conference on Earthquake engineering and Seismology (2ECEES), European Association of Earthquake Engineering (EAEE), Istanbul, Turkey, Aug 25–29.

  • López-López, A., Tomás, A., & Sánchez-Olivares, G. (2016). Behavior of reinforced concrete rectangular sections based on tests complying with seismic construction requirements. Structural Concrete. https://doi.org/10.1002/suco.201500107.

    Google Scholar 

  • Louzai, A., & Abed, A. (2015). Evaluation of the seismic behavior factor of reinforced concrete frame structures based on comparative analysis between non-linear static pushover and incremental dynamic analyses. Bulletin of Earthquake Engineering, 13, 1773–1793.

    Article  Google Scholar 

  • Massumi, A., Tasnimi, A. A., Saatcioglu, M. (2004). Prediction of seismic over strength in concrete moment resisting frames using incremental static and dynamic analysis. In: 13th World conference on earthquake engineering, Vancouver, B.C., Canada, paper No. 2826.

  • Mattock, A. H. (1964). Rotational capacity of hinging regions in reinforced concrete beams. ACI Structural Journal, SP-12, 143–181.

    Google Scholar 

  • Mattock, A. H. (1967). Rotational capacity of hinging regions in reinforced concrete beams. Journal of Structural Division ASCE, ST 2, 93, 519–522.

    Google Scholar 

  • Mortezaei, A., & Ronagh, H. R. (2012). Plastic hinge length of FRP strengthened reinforced concrete columns subjected to both far-fault and near-fault ground motions. Scientia Iranica, 6(19), 1365–1378.

    Article  Google Scholar 

  • Mwafy, A. M., & Elnashai, A. S. (2002). Calibration of force reduction factors of RC buildings. Journal of Earthquake Engineering, 2(6), 239–273.

    Google Scholar 

  • Nazri, F. M., & Ken, P. Y. (2014). Seismic performance of moment resisting steel frame subjected to earthquake excitations. Frontiers of Structural and Civil Engineering, 1(8), 19–25.

    Article  Google Scholar 

  • Nekmouche, A., Hamizi, M., Boukais, S., & Hannachi, N. E. (2015). Pushover analysis application for damage assessment in critical section of RC/frame. The 6th International Conference on Mechanics and Materials in Design, Delgada, Portugal, 30–31 July, 2015.

  • Park, R., Priestley, M. J. N., & Gill, W. D. (1982). Ductility of square-confined concrete columns. Journal of Structural Division ASCE, ST4, 108, 929–950.

    Google Scholar 

  • Paulay, T., & Priestley, M. J. N. (1992). Seismic design of reinforced concrete and masonry buildings. New York: Wiley.

    Book  Google Scholar 

  • Popovics, S. (1973). A numerical approach to the complete stress-train curve of concrete. Cement and Concrete Research, 5(3), 483–599.

    Google Scholar 

  • Priestley, M. J. N., & Park, R. (1987). Strength and ductility of concrete bridge columns under seismic loading. ACI Structural Journal, 1(84), 61–76.

    Google Scholar 

  • Sheikh, S. A., & Khoury, S. S. (1993). Confined concrete columns with stubs. ACI Structural Journal, 4(90), 414–431.

    Google Scholar 

  • Sheikh, S. A., Shah, D. V., & Khoury, S. S. (1994). Confinement of high-strength concrete columns. ACI Structural Journal, 1(91), 100–111.

    Google Scholar 

  • Sun, Y., Xiao, J., & Zhou, D. (2008). Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading. Frontiers of Architecture and Civil Engineering, 4(2), 302–308.

    Article  Google Scholar 

  • Tabaeye Izadi, I., & Ranjbaran, A. (2012). Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings. Frontiers of Structural and Civil Engineering, 4(6), 421–430.

    Google Scholar 

  • UBC 97. (1997). International Conference of Building Officials, Whittier, California, 1997.

  • Vecchio, F. J., & Collin, M. P. (1986). The modified compression field theory for reinforced concrete elements subjected to shear. ACI Journal, 2(83), 219–231.

    Google Scholar 

  • Vecchio, F. J., & Emara, M. B. (1992). Shear deformations in reinforced concrete frames. ACI Structural Journal, 89(1), 46–56.

    Google Scholar 

  • Xianjie, W., Xun’an, Z., Limazie, T., & Yeda, L. (2012). Structural two-parameter exponential damage model performance analysis under earthquake excitation. Procedia Earth and Planetary Science, 5, 275–279.

    Article  Google Scholar 

  • Zhang, F., Lu, X., & Yin, C. (2009). Numerical simulation and analysis for collapse responses of RC frame structures under earthquake. Frontiers of Architecture and Civil Engineering, 4(3), 364–369.

    Article  Google Scholar 

  • Zhao, X. M., Wu, Y. F., & Leung, A. Y. T. (2012). Analyses of plastic hinge regions in reinforced concrete beams under monotonic loading. Engineering Structures, 34, 466–482.

    Article  Google Scholar 

  • Zhou, K. J. H., Ho, J. C. M., & Su, R. K. L. (2010). Normalized rotation capacity for deformability evaluation of high-performance concrete beams. Earthquake and Structures, 3(2010), 269–287.

    Article  Google Scholar 

  • Zhou, X., & Yu, R. (2007). Development of a seismic design method based on response spectra for building structures. Frontiers of Architecture and Civil Engineering, 2(1), 129–141.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nekmouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekmouche, A., Hamizi, M., Khelil, N. et al. Simplified models to control plastic hinges in reinforced concrete frame structures. Asian J Civ Eng 19, 13–25 (2018). https://doi.org/10.1007/s42107-017-0002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-017-0002-3

Keywords

Navigation