Skip to main content
Log in

Bayesian Inference of Soil Traits from Green Manure Fields in a Tropical Sandy Soil

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Green manure represents a crucial soil management practice for soil traits and potentially sequestering organic carbon (OC) within the soil profile. Understanding the biomass dynamics of Fabaceae and Poaceae plants has become essential for refining existing models of soil fertility and organic carbon. In this work, we have developed six models of the fertility and carbon stock of the soil collected from the plots where ten plant species were cultivated as green manuring crop. Two of them are named aboveground and belowground biomass models which use specific biomass production parameters α and adapted to both Fabaceae and Poaceae stands, and three other models are named Ca2+, K+ and P models adapted to green manure stands. The last one is named soil organic carbon stock model, and it is adapted to both Fabaceae and Poaceae stands. A Bayesian inference was carried out to determine parameters values according to the 6-years field experiment database. The highest significant values for SOC stock, aboveground biomass model, and belowground biomass modes were found for the Fabaceae model with 9.99 t ha−1, 5.37 t ha−1, and 0.61 g cm−3, respectively. All proposed models into this study (density, soil, and biomass models) were explained by the geometric reliability index (GRI) and efficiency factor (EF) with a more dispersive fitting. This study underscores the importance of considering adapted models from the Fabaceae and Poaceae families, particularly those with high growth rate index (GRI) and efficiency factor (EF). We found that shoot dry biomass exhibited a polynomial decrease, whereas root density showed an exponential decrease over time for both Poaceae and Fabaceae plants. Furthermore, our study revealed that long-term cultivation of cover crops with green manure significantly augmented the contents of exchangeable cations (Ca2+ and K+) as well as soil organic carbon (SOC) stock.

Highlights

1. The green manure practice may increase Ca2+, K+, and soil organic carbon stock in a tropical Regosol.

2. The practice of green manure may enhance soil fertility through consecutive use, resulting in significant impacts on the contents of soil calcium (Ca2+) and potassium (K+).

3. By altering soil fertility both Poaceae and Fabaceae plants used as green manure may promote their own growth by increasing soil organic carbon stock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on a reasonable request.

Code Availability

Not applicable.

References  

  • Abera, G., & Gerkabo, H. (2020). Effects of green manure legumes and their termination time on yield of maize and soil chemical properties. Archives of Agronomy and Soil Science, 67, 397–409. https://doi.org/10.1080/03650340.2020.1733536

    Article  CAS  Google Scholar 

  • Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O., & Ugbe, J. O. (2019). Green manures and NPK fertilizer effects on soil properties, growth, yield, mineral and vitamin C composition of okra (Abelmoschus esculentus (L.) Moench). Journal of the Saudi Society Agricultural Sciences, 18, 218–223. https://doi.org/10.1016/j.jssas.2017.05.005

    Article  Google Scholar 

  • Amede, T., Legesse, G., Agegnehu, G., Gashaw, T., Degefu, T., Desta, G., Mekonnen, K., Schulz, S., & Thorne, P. (2020). Short term fallow and partitioning effects of green manures on wheat systems in East African highlands. Field Crops Research, 269, e108175. https://doi.org/10.1016/j.fcr.2021.108175

    Article  Google Scholar 

  • Amsili, J. P., & Kaye, J. P. (2021). Root traits of cover crops and carbon inputs in an organic grain rotation. Renewable Agriculture and Food Systems, 36, 182–191. https://doi.org/10.1017/S1742170520000216

    Article  Google Scholar 

  • Balasubramanian, D., Zhang, Y. P., Grace, J., Sha, L. Q., Jin, Y., Zhou, L. G., Lin, Y. X., Zhou, R. W., Gao, J. B., Song, Q. H., Liu, Y. T., & Zhou, W. J. (2020). Soil organic matter as affected by the conversion of natural tropical rainforest to monoculture rubber plantations under Acric Ferralsols. CATENA, 195, e104753. https://doi.org/10.1016/j.catena.2020.104753

    Article  CAS  Google Scholar 

  • Barbosa, L. S., Souza, T. A. F., Lucena, E. O., Silva, L. J. R., Laurindo, L. K., Nascimento, G. S., & Santos, D. (2021). Arbuscular mycorrhizal fungi diversity and transpiratory rate in long-term field cover crop systems from tropical ecosystem, Northeastern Brazil. Symbiosis, 85, 207–216. https://doi.org/10.1007/s13199-021-00805-0

    Article  CAS  Google Scholar 

  • Brasil Neto, A. B., Brasil, N. M. Q. X., Andrade, P. I. L., Sampaio, A. C. F., Noronha, N. C., Carvalho, E. J. M., Silva, A. R., & Schwartz, G. (2021). The commercial tree species Dipteryx odorata improves soil physical and biological attributes in abandoned pastures. Ecological Engineering, 160, e106143. https://doi.org/10.1016/j.ecoleng.2020.106143

    Article  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.

    Article  Google Scholar 

  • Chivenge, P., Vanlauwe, B., Gentile, R., Wangechi Gitau, J., & Six, J. (2011). Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology and Biochemistry, 43, 657–666.

    Article  CAS  Google Scholar 

  • Core Team R. R. (2018). A language and environment for statistical computing. R foundation for statistical computing, Vienna. https://www.R-project.org/. Accessed Jan 2022.

  • Dutra, W. F., Ribeiro Júnior, J. I., Oliveira, F. S., Martins, A. L. M., Alves, B. J. R., & Urquiaga, S. (2021). Cover crops as an agricultural practice to improve soil quality and reduce erosion and nitrogen losses in Brazilian agricultural systems. Journal of Cleaner Production, 293, 126228.

    Google Scholar 

  • Eze, S., Dougill, A. J., Banwart, S. A., Hermans, T. D. G., Ligowe, I. S., & Thierfelder, C. (2020). Impacts of conservation agriculture on soil structure and hydraulic properties of Malawian agricultural systems. Soil Tillage Research, 201, e104639. https://doi.org/10.1016/j.still.2020.104639

    Article  Google Scholar 

  • Fagundez, J. L. S., Netto, M. S., Dotto, G., & Salau, N. P. G. (2021). A new method of developing ANN-isotherm hybrid models for the determination of thermodynamic parameters in the adsorption of ions Ag+, Co2+ and Cu2+ onto zeolites ZSM-5, HY, and 4A. Journal of Environmental Chemical Engineering, 9, e106126. https://doi.org/10.1016/j.jece.2021.106126

    Article  CAS  Google Scholar 

  • Fernández, M., Alaejos, J., Andivia, E., Madejón, P., Díaz, M. J., & Tapias, R. (2020). Short rotation coppice of leguminous tree Leucaena spp. improves soil fertility while producing high biomass yields in Mediterranean environment. Industrial Crops and Products, 157, e112911. https://doi.org/10.1016/j.indcrop.2020.112911

    Article  CAS  Google Scholar 

  • Ferreira, N. M., Santos, D., Bertino, A. M. P., Cavalcante, A. C. P., Pereira, W. E., Bertino, A. M. P., & Oliveira, A. P. (2019). Potential of Species of Green Coverage in Entisol. The Journal of Agricultural Science, 11, 263–273. https://doi.org/10.5539/jas.v11n11p263

    Article  Google Scholar 

  • Firmano, R. F., Colzato, M., Bossolani, J. W., Colnago, L. A., Martin-Neto, L., & Alleoni, L. R. F. (2021). Long-term lime and phosphogypsum broadcast affects phosphorus cycling in a tropical Oxisol cultivated with soybean under no-till. Nutrient Cycling in Agroecosystems, 120, 307–324. https://doi.org/10.1007/s10705-021-10151-8

    Article  CAS  Google Scholar 

  • Fontana, M., Bragazza, L., Guillaume, T., Santonja, M., Buttler, A., Elfouki, S., & Sinaj, S. (2021). Valorization of calcium phosphite waste as phosphorus fertilizer: Effects on green manure productivity and soil properties. Journal of Environmental Management, 285, e112061. https://doi.org/10.1016/j.jenvman.2021.112061

    Article  CAS  Google Scholar 

  • Forstall-Sosa, K. S., de Souza, T. A. F., de Oliveira Lucena, E., da Silva, S. I. A., Ferreira, J. T. A., do Nascimento Silva, T., Santos, D., & Niemeyer, J. C. (2020). Soil macroarthropod community and soil biological quality index in a green manure farming system of the Brazilian semi-arid. Biologia, 76, 907–917. https://doi.org/10.2478/s11756-020-00602-y

    Article  Google Scholar 

  • Freund, L., Mariotte, P., Santonja, M., Buttler, A., & Jeangros, B. (2021). Species identity, rather than species mixtures, drives cover crop effects on nutrient partitioning in unfertilized agricultural soil. Plant and Soil, 460, 149–162. https://doi.org/10.1007/s11104-020-04782-z

    Article  CAS  Google Scholar 

  • Fukuda, M., Iehara, T., & Matsumoto, M. (2003). Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management, 184, 1–16.

    Article  Google Scholar 

  • Gálan, R. J., Bernal-Vasquez, A., Jebsen, C., Piepho, H., Thorwarth, P., Steffan, P., Gordillo, A., & Miedaner, T. (2021). Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material. Theoretical and Applied Genetics, 134, 1409–1422. https://doi.org/10.1007/s00122-021-03779-1

    Article  CAS  PubMed  Google Scholar 

  • Glick, H. B., Umunay, P. M., Makana, J., Thomas, S. C., Scherer, J. D. R., & Gregoire, T. G. (2021). Developmental Dynamics of Gilbertiodendron dewevrei (Fabaceae) Drive Forest Structure and Biomass in the Eastern Congo Basin. Forests, 12, e738. https://doi.org/10.3390/f12060738

    Article  Google Scholar 

  • Hanrahan, B. R., Tank, J. L., Speir, S. L., Trentman, M. T., Christopher, S. F., Mahl, U. H., & Roye, T. V. (2021). Extending vegetative cover with cover crops influenced phosphorus loss from an agricultural watershed. The Science of Total Environment, 801, e149501. https://doi.org/10.1016/j.scitotenv.2021.149501

    Article  ADS  CAS  Google Scholar 

  • Hansen, V., Eriksen, J., Jensen, L. S., Kristensen, T. K., & Magid, J. (2021). Towards integrated cover crop management: N, P and S release from aboveground and belowground residues. Agriculture, Ecosystems, and Environments, 313, e107392. https://doi.org/10.1016/j.agee.2021.107392

    Article  CAS  Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.

    Article  Google Scholar 

  • Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1–18.

    Article  CAS  Google Scholar 

  • Inagaki, T. M., Sá, J. C. M., Tormena, C. A., Dranski, A., Muchalak, A., Briedis, C., Ferreira, A. O., Giarola, N. F. B., & Silva, A. P. (2021). Mechanical and biological chiseling impacts on soil organic C stocks, root growth, and crop yield in a long-term no-till system. Soil Tillage Research, 211, e104993. https://doi.org/10.1016/j.still.2021.104993

    Article  Google Scholar 

  • Jeffreys, H. (1961). Theory of Probability. Oxford Univ. Press.

    Google Scholar 

  • Khan, M. I., Gwon, H. S., Alam, M. A., Song, H. J., Das, S., & Kim, P. J. (2020). Short term effects of different green manure amendments on the composition of main microbial groups and microbial activity of a submerged rice cropping system. Applied Soil Ecology, 147, e103400. https://doi.org/10.1016/j.apsoil.2019.103400

    Article  Google Scholar 

  • Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875–5895.

    Article  Google Scholar 

  • Lepcha, P., & Sathyanarayana, N. (2021). Variability for Seed-based Economic Traits and Genetic Diversity Analysis in Mucuna pruriens Population of Northeast India. Agricultural Research. https://doi.org/10.1007/s40003-021-00568-6

    Article  Google Scholar 

  • Lins, R. S., Lima, C. M. R., Farias, M. F. A., Silva, E. M. D., & Rangel, J. H. D. A. (2021). Challenges and Opportunities for Sustainable Agriculture in the Brazilian Semiarid Region: A Review. Revista Caatinga, 34, 1099–1113.

    Google Scholar 

  • Lucena, E. O., Souza, T., Silva, S. I. A., Kormann, S., Silva, L. J. R., Laurindo, L. K., Forstall-Sosa, K. S., & Andrade, L. A. (2021). Soil biota community composition as affected by Cryptostegia madagascariensis invasion in a tropical Cambisol from North-eastern Brazil. Tropical Ecology, 62, 662–669. https://doi.org/10.1007/s42965-021-00177-y

    Article  Google Scholar 

  • Ma, D., Yin, L., Ju, W., Li, X., Liu, X., Deng, X., & Wang, S. (2021). Meta-analysis of green manure effects on soil properties and crop yield in northern China. Field Crops Research., 266, e108146. https://doi.org/10.1016/j.fcr.2021.108146

    Article  Google Scholar 

  • Makhaye, N., Aremu, A. O., Gruz, J., & Magadlela, A. (2021). Effects of soil nutrients and microbe symbiosis on the nutrient assimilation rates, growth carbon cost and phytochemicals in Mucuna pruriens (L.) DC. Acta Physiologiae Plantarum, 43, 153. https://doi.org/10.1007/s11738-021-03321-2

    Article  CAS  Google Scholar 

  • Meena, R. S., & Lal, R. (2018). Legumes and sustainable use of soils. In: R. Meena, A. Das,  G. Yadav, & R. Lal (Eds.), Legumes for Soil Health and Sustainable Management (pp. 1–31). Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_1

  • Melo, L. N., Souza, T. A. F., & Santos, D. (2019). Transpiratory rate, biomass production, and leaf macronutrient content of different plant species cultivated on a Regosol in the Brazilian semiarid. Russian Agricultural Sciences, 45, 147–153. https://doi.org/10.3103/S1068367419020150

    Article  Google Scholar 

  • Mendes, K. R., Granja, J. A., Ometto, J. P., Antonino, A. C., Menezes, R. S., Pereira, E. C., & Pompelli, M. F. (2017). Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest. Functional Plant Biology, 44, 1039–1051. https://doi.org/10.1071/FP17098

    Article  PubMed  Google Scholar 

  • Mengistu, S., Feyissa, F., & Kebede, G. (2018). Progress of Forage Legumes Breeding and Genetics Research in Ethiopia: A review. Ethiopian Journal of Crop Science Special, 1, 153–178.

    Google Scholar 

  • Mohanty, M., & Kumar, U. (2020). Green Manure: A Sustainable Way to Enhance Soil Fertility. Advances in Soil Fertility Management for Sustainable Development (pp. 155–173). Springer.

    Google Scholar 

  • Moreno, C., Barbosa, L. L., Lima, L. S., & Ferro, V. G. (2021). Effect of light stress on Crotalaria spectabilis (Fabaceae) and on its herbivore insect, the moth Utetheisa ornatrix (Erebidae: Arctiinae). Iheringia, 11, e2021018. https://doi.org/10.1590/1678-4766e2021e2021018

    Article  Google Scholar 

  • Moussa, H., Kindomihou, V., Houehanou, T. D., Soumana, I., Dossou, J., & Sinsin, B. (2021). Farmers’ perceptions of fodder performances of pearl millet (Pennisetum glaucum (L.) R. Br) accessions in Niger. Heliyon, 7, e9. https://doi.org/10.1016/j.heliyon.2021.e07965

    Article  Google Scholar 

  • Naeem, M., Shabbir, A., Ansari, A. A., Aftab, T., Khan, M. M. A., & Uddin, M. (2020). Hyacinth bean (Lablab purpureus L.) – An underutilized crop with future potential. Sci Hort, 272, 15. https://doi.org/10.1016/j.scienta.2020.109551

    Article  CAS  Google Scholar 

  • Namazzi, C., Sserumaga, J. P., Mugerwa, S., Kyalo, M., Mutai, C., Mwesigwa, R., Djikeng, A., & Ghimire, S. (2020). Genetic Diversity and Population Structure of Brachiaria (syn. Urochloa) Ecotypes from Uganda. Agronomy, 10, e8. https://doi.org/10.3390/agronomy10081193

    Article  Google Scholar 

  • Nascimento, G. S., Souza, T. A. F., Silva, L. J. R., & Santos, D. (2021a). Soil physico-chemical properties, biomass production, and root density in a green manure farming system from tropical ecosystem, North-eastern Brazil. Journal of Soils Sediments, 21, 2203–2211. https://doi.org/10.1007/s11368-021-02924-z

    Article  CAS  Google Scholar 

  • Nascimento, G. S., Souza, T. A. F., da Silva, L. J. R., Laurindo, L. K., & Santos, D. (2021b). Predictive physico-chemical model for soil quality index in a long-term green manure farming system at tropical conditions, North-eastern Brazil. Research Square, 1, e342176. https://doi.org/10.21203/rs.3.rs-342176/v1

  • Nash, J. E., & Sutcliffe, V. (1970). River flow forecasting through conceptual models. Part I. A Discussion of Principles. Journal of Hydrology, 10, 282–290.

    Article  ADS  Google Scholar 

  • Ng, K., McIntyre, S., Macfadyen, S., Barton, P. S., Driscoll, D. A., & Lindenmayer, D. B. (2018). Dynamic effects of ground-layer plant communities on beetles in a fragmented farming landscape. Biodiversity and Conservation, 27, 2131–2153. https://doi.org/10.1007/s10531-018-1526-x

    Article  Google Scholar 

  • Nicoulaud-Gouin, V., Gonze, M. A., Hurtevent, P., & Calmon, P. (2021). Bayesian inference of biomass growth characteristics for sugi (C. japonica) and hinoki (C. obtusa) forests in self-thinned and managed stands. For Ecosyst, 8, e75. https://doi.org/10.1186/s40663-021-00354-4

    Article  Google Scholar 

  • Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (1993). Laboratory methods of plant and soil analysis: A working manual. Technical bulletin n. 1. Nairobi: tropical soil biology and fertility Programme/soil science society East Africa/UNESCO/ROSTA. https://www.worldcat.org/title/laboratory-methods-of-soil-and-plant-analysis-aworking-manual/oclc/51374874

  • Ostonen, I., Püttsepp, Ü., Biel, C., Alberton, O., Bakker, M. R., Lõhmus, K., Majdi, H., Metcalfe, D., Olsthoorn, A. F., Pronk, A., Vanguelova, E., & Weih, M. (2007). Specific root length as an indicator of environmental change. Plant Biosystems, 141, 426–442.

    Article  Google Scholar 

  • Sanches, G. M., Magalhães, P. S. G., Kolln, O. T., Otto, R., Rodrigues Junior, F., Cardoso, T. F., Chagas, M. F., & Franco, H. C. J. (2021). Agronomic, economic, and environmental assessment of site-specific fertilizer management of Brazilian sugarcane fields. Geoderma Regional, 24, e00360. https://doi.org/10.1016/j.geodrs.2021.e00360

    Article  Google Scholar 

  • Santos, F. H. S., & Resende, G. M. (2021). Soil Management in the Semiarid Northeast Region of Brazil: Contributions to Sustainable Agriculture. Sustainability, 13, e4787.

    Google Scholar 

  • Santos, I. A. F. M., Lira Junior, M. A., Galdino, A. C., Fracetto, F. J. C., & Fracetto, G. G. M. (2017). New rhizobial strains for velvet bean (Stizolobium aterrimum) evaluated under greenhouse and field conditions. Ciência e Agrotecnologia, 41, 428–438. https://doi.org/10.1590/1413-70542017414012917

    Article  CAS  Google Scholar 

  • Santos, W. P., Silva, M. L. N., Avanzi, J. C., Acuña-Guzman, S. F., Cândido, B. M., Cirillo, M. A., & Curi, N. (2021). Soil quality assessment using erosion-sensitive indices and fuzzy membership under different cropping systems on a Ferralsol in Brazil. Geoderma Regional, 25, e00385. https://doi.org/10.1016/j.geodrs.2021.e00385

    Article  Google Scholar 

  • Schmitt, M. B., Berti, M., Samarappuli, D., & Ransom, J. K. (2021). Factors affecting the establishment and growth of cover crops intersown into maize (Zea mays L.). Agronomy, 11, 712. https://doi.org/10.3390/agronomy11040712

    Article  CAS  Google Scholar 

  • Silva, J. R., Yule, T. S., & Dias, E. S. (2020). Structural features and contribution of belowground buds to conservation of Fabaceae species in a seasonally dry neotropical environment. Flora, 264, e151570. https://doi.org/10.1016/j.flora.2020.151570

    Article  Google Scholar 

  • Soares, M. B., Tavanti, R. F. R., Rigotti, A. R., Lima, J. P., Freddi, O. S., & Petter, F. A. (2021). Use of cover crops in the southern Amazon region: What is the impact on soil physical quality? Geoderma, 384, 114796. https://doi.org/10.1016/j.geoderma.2020.114796

    Article  ADS  Google Scholar 

  • Solis, R., Pezo, M., Arévalo, L., Lao, C., Alegre, J., & Pérez, K. (2019). Evaluation of leguminous species as cover crops associated with sacha inchi. Pesquisa Agropecuária Tropical, 49, e58011. https://doi.org/10.1590/1983-40632019v4958011

    Article  Google Scholar 

  • Sousa, M. G., Araujo, J. K. S., Ferreira, T. O., Andrade, G. R. P., Araújo Filho, J. C., Fracetto, G. G. M., Santos, J. C. B., Fracetto, J. C., Lima, G. K., & Souza Junior, V. (2021). Long-term effects of irrigated agriculture on Luvisol pedogenesis in semi-arid region, northeastern Brazil. CATENA, 206, e105529. https://doi.org/10.1016/j.catena.2021.105529

    Article  CAS  Google Scholar 

  • Souza, T. A. F., & Santos, D. (2018). Effects of using different host plants and long-term fertilization systems on population sizes of infective arbuscular mycorrhizal fungi. Symbiosis, 76, 139–149. https://doi.org/10.1007/s13199-018-0546-3

    Article  CAS  Google Scholar 

  • Souza, T. A. S., Rodrigues, A. F., & Marques, L. F. (2016). Long-term effects of alternative and conventional fertilization II: Effects on Triticum aestivum L. development and soil properties from a Brazilian Ferralsols. Russian Agricultural Sciences, 42, 1–6. https://doi.org/10.3103/S1068367416010195

    Article  Google Scholar 

  • Souza, T. A. F., Andrade, L. A., Freitas, H., Silva, S., & Sandim, A. S. (2017). Biological invasion influences the outcome of plant-soil feedback in the invasive plant species from the Brazilian semi-arid. Microbial Ecology, 74, 1–11. https://doi.org/10.1007/s00248-017-0999-6

    Article  ADS  Google Scholar 

  • Souza, A. V. S. S., Souza, T. A. F., Santos, D., Rios, E. S., & Souza, G. J. L. (2018). Agronomic evaluation of legume cover crops for sustainable agriculture. Russian Agricultural Sciences, 44, 31–38. https://doi.org/10.3103/S1068367418010093

    Article  Google Scholar 

  • Stabile, M. C., Guimarães, A. L., Silva, D. S., Ribeiro, V., Macedo, M. N., Coe, M. T., Pinto, E., Moutinho, P., & Alencar, A. (2020). Solving Brazil’s land use puzzle: Increasing production and slowing Amazon deforestation. Land Use Pol, 91, e104362. https://doi.org/10.1016/j.landusepol.2019.104362

    Article  Google Scholar 

  • Sun, Y., Zang, H., Splettstober, T., Kumar, A., Xu, X., Kuzyakov, Y., & Pausch, J. (2021). Plant intraspecific competition and growth stage alter carbon and nitrogen mineralization in the rhizosphere. Plant, Cell and Environment, 44, 1231–1242. https://doi.org/10.1111/pce.13945

    Article  CAS  PubMed  Google Scholar 

  • Tang, J., & Riley, W. J. (2021). Finding Liebig’s law of the minimum. Ecological Applications, 31, e02458. https://doi.org/10.1002/eap.2458

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise do solo. Embrapa Solos.

    Google Scholar 

  • Titova, J., & Baltrėnaitė, E. (2020). Physical and Chemical Properties of Biochar Produced from Sewage Sludge Compost and Plants Biomass, Fertilized with that Compost, Important for Soil Improvement. Waste Biomass, 12, 3781–3800. https://doi.org/10.1007/s12649-020-01272-2

    Article  CAS  Google Scholar 

  • Vance, C. P. (2001). Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology, 127, 390–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidotto, L. C., Schneider, K., Morato, R. W., Nascimento, L. R., & Rüther, R. (2024). An evaluation of the potential of agrivoltaic systems in Brazil. Applied Energy, 360, e122782. https://doi.org/10.1016/j.apenergy.2024.122782

    Article  Google Scholar 

  • Vyawahare, P., Tun, H., Vaughn, M. W., & Chen, C. C. (2021). From Langmuir isotherm to Brunauer–Emmett–Teller isotherm. J AIChE, 68, e17523. https://doi.org/10.1002/aic.17523

    Article  CAS  Google Scholar 

  • Wang, Y. P., Huang, Y., Augusto, L., Goll, D. S., Helfenstein, J., & Hou, E. (2022). Toward a Global Model for Soil Inorganic Phosphorus Dynamics: Dependence of Exchange Kinetics and Soil Bioavailability on Soil Physicochemical Properties. Global Biogeochemical Cycles, 36, e2021GB007061. https://doi.org/10.1029/2021GB007061

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasongaa, M. A., Arungab, E. E., Neondoc, J. O., Mulia, J. K., Kamaud, P. K., & Budambula, N. L. M. (2021). A hybridization technique for orphan legumes: Development of an artificial interspecific pollination protocol for Crotalaria spp. Journal of Crop Improvement, 35, 2. https://doi.org/10.1080/15427528.2020.1810189

    Article  CAS  Google Scholar 

  • Watthier, M., Antonio, N. P., Gomes, J. A., Rocha, S. B. F., & Santos, R. H. S. (2020). Decomposition of green manure with different grass: Legume ratios. Arch Agron Soil Sci, 66, 913–924. https://doi.org/10.1080/03650340.2019.1644622

    Article  CAS  Google Scholar 

  • WRB—IUSS Working Group (2015). World reference base for soil; world soil resources reports; FAO, Rome, Italy.

  • Wu, Q., Kwak, J. H., Sx, C., Han, G., & Gong, X. (2020). Cattle urine and dung additions differently affect nitrification pathways and greenhouse gas emission in a grassland soil. Biol Fertil Soil, 56, 235–247. https://doi.org/10.1007/s00374-019-01415-1

    Article  CAS  Google Scholar 

  • Yang, K., Chapman, S., Carpenter, N., Hammer, G., McLean, G., Zheng, B., Chen, Y., Delp, E., Masjedi, A., Crawford, M., Ebert, D., Habib, A., Thompson, A., Weil, C., & Tuinstra, M. R. (2021). Integrating crop growth models with remote sensing for predicting biomass yield of sorghum. Silico Plants, 3, diab001. https://doi.org/10.1093/insilicoplants/diab001

    Article  Google Scholar 

  • Yao, Z., Zhang, D., Liu, N., Yao, P., Zhao, N., Li, Y., Zhang, S., Zhai, B., Huang, D., Wang, Z., Cao, W., Adl, S., & Gao, Y. (2019). Dynamics and Sequestration Potential of Soil Organic Carbon and Total Nitrogen Stocks of Leguminous Green Manure-Based Cropping Systems on the Loess Plateau of China. Soil till Res, 191, 108–116. https://doi.org/10.1016/j.still.2019.03.022

    Article  Google Scholar 

  • Yoda, K., Kira, T., Ogawa, H., & Hozami, K. (1963). Self thinning in overcrowded pure stands under cultivated and natural conditions. J Biol Osaka City Univ, 14, 107–129.

    Google Scholar 

  • Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., Shen, Y., & Galford, G. L. (2015). Managing nitrogen for sustainable development. Nature, 528, 51–59.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, D., Yao, P., Zhao, N., Xao, W., Zhang, S., Li, Y., Huang, D., Zhai, B., Wang, Z., & Gao, Y. (2019). Building up the soil carbon pool via the cultivation of green manure crops in the Loess Plateau of China. Geoderma, 337, 425–433. https://doi.org/10.1016/j.geoderma.2018.09.053

    Article  ADS  CAS  Google Scholar 

  • Zhou, L., Li, J., Pokhrel, G. R., Zhao, Y., Zhang, C., Chu, W., Guo, X., & Wu, Z. (2022). Effects of monoculture regime on the soil nirK- and nosZ-denitrifying bacterial communities of Casuarina equisetifolia. Applied Soil Ecology, 171, e104326. https://doi.org/10.1016/j.apsoil.2021.104326

    Article  Google Scholar 

Download references

Acknowledgements

We thank the GEBIOS (Soil Biology Research Group) for practical support. We thank the Postgraduate Program of Agroecology of the Federal University of Paraiba and the Postgraduate Program of Forest Engineering of the University of the State of Santa Catarina for facilitating the post-doctorate studies of the second author. Tancredo Souza is supported by a research fellowship from FAPESQ-PB, Brazil.

Funding

This work was partly funded by FAPESQ-PB, Brazil. T.S. was funded by the Paraiba State Research Foundation (FAPESQ), Brazil, Grant #09–2023.

Author information

Authors and Affiliations

Authors

Contributions

We declare that all the authors made substantial contributions to the conception, design, acquisition, analysis, and interpretation of the data. All the authors participated in drafting the article, revising it critically for important intellectual content; and finally, the authors gave final approval of the version to be submitted to International Journal of Plant Production.

Corresponding author

Correspondence to Tancredo Souza.

Ethics declarations

Ethics approval

Not applicable.

International Journal of Plant Production

We have read and have abided by the statement of ethical standards for manuscripts submitted to International Journal of Plant Production.

Consent to Publish

We confirm that this manuscript has not been published elsewhere and is not under consideration by another journal. All Authors have approved the manuscript and agree with submission to.

Consent to Participate

Not applicable.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Nascimento, G., Souza, T., da Silva, L.J.R. et al. Bayesian Inference of Soil Traits from Green Manure Fields in a Tropical Sandy Soil. Int. J. Plant Prod. (2024). https://doi.org/10.1007/s42106-024-00291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42106-024-00291-6

Keywords

Navigation