Skip to main content
Log in

Changes of soil organic and inorganic carbon in relation to grassland degradation in Northern Tibet

  • Original Article
  • Published:
Ecological Research

Abstract

The effect of livestock grazing on grassland degradation and the resulting impact on soil carbon concentration is an important factor in carbon estimation. We addressed this issue using field observations and laboratory analysis of samples from Tibetan grassland. Based on the field measurements, we investigated the soil organic carbon (SOC) and soil inorganic carbon (SIC) under two contrasting degradation states: lightly or non-degraded grasslands (LDG) and heavily degraded grasslands (HDG). We assessed their relationships with environmental factors using data collected from 99 sites across Northern Tibet during 2011–2012. Data were analyzed using a linear mixed-effects model and one-way ANOVA. The results showed that: (1) SOC concentration decreased and SIC concentration increased following grassland degradation, especially at soil depths in the range of 0–10 cm (P < 0.05); (2) the major environmental factors affecting SOC and SIC were soil pH and plant biomass; (3) spatially, the SOC density increased with the mean annual temperature and mean annual precipitation, whereas SIC exhibited the opposite trend; (4) the SOC density increased at first and then decreased with increasing grazing intensity, with an opposite trend in SIC; and (5) soil carbon storage in this region was 0.14 Pg smaller in the HDG than in the LDG. This study suggests that grassland degradation can significantly affect the vertical distribution and storage of SOC and SIC. The carbon sequestration capacity of the top 100 cm of soil in Northern Tibet was estimated as 0.14 Pg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad W, Singh B, Dijkstra FA, Dalal R (2012) Inorganic and organic carbon dynamics in a limed acid soil are mediated by plants. Soil Biol Biochem 57:549–555

    Article  Google Scholar 

  • Albaladejo J, Ortiz R, Garcia-Franco N, Navarro AR, Almagro M, Pintado JG, Martínez-Mena M (2013) Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. J Soil Sediment. 13:265–277

    Article  CAS  Google Scholar 

  • Álvaro-Fuentes J, Easter M, Paustian K (2012) Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric Ecosyst Environ 155:87–94

    Article  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  PubMed  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Berhongaray G, Alvarez R, De Paepe J, Caride C, Cantet R (2013) Land use effects on soil carbon in the Argentine Pampas. Geoderma 192:97–110

    Article  CAS  Google Scholar 

  • Brekke KA, Ksendal B, Stenseth NC (2007) The effect of climate variations on the dynamics of pasture–livestock interactions under cooperative and noncooperative management. Proc Natl Acad Sci 104:14730–14734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao G, Long R (2009) Three rivers area “black soil” type degraded grassland natural recovery of on bottlenecks and solutions. Acta Agrestia Sin 17:4–9

    Google Scholar 

  • Cao G, Tang Y, Mo W, Wang Y, Li Y, Zhao X (2004) Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biol Biochem 36:237–243

    Article  CAS  Google Scholar 

  • Chang R, Fu B, Liu G, Wang S, Yao X (2012) The effects of afforestation on soil organic and inorganic carbon: a case study of the Loess Plateau of China. Catena 95:145–152

    Article  CAS  Google Scholar 

  • Chaplot V, Dlamini P, Chivenge P (2016) Potential of grassland rehabilitation through high density-short duration grazing to sequester atmospheric carbon. Geoderma 271:10–17

    Article  CAS  Google Scholar 

  • Chen Y, Fischer G (1998) A new digital georeferenced database of grassland in China. IIASA Interim Report (IR-98-062). International Institute for Applied Systems Analysis (IIASA), Laxenburg

    Google Scholar 

  • Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355

    Article  Google Scholar 

  • Dlamini P, Chivenge P, Manson A, Chaplot V (2014) Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa. Geodermas 235–236:372–381

    Article  Google Scholar 

  • Dlamini P, Chivenge P, Chaplot V (2016) Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: a meta-analysis shows. Agric Ecosyst Environ 221:258–269

    Article  CAS  Google Scholar 

  • Fan J-W, Shao Q-Q, Liu J-Y, Wang J-B, Harris W, Chen Z-Q, Zhong H-P, Xu X-L, Liu R-G (2010) Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environ Monit Assess 170:571–584

    Article  PubMed  Google Scholar 

  • Feng J, Wang T, Qi S, Xie C (2005) Land degradation in the source region of the Yellow River, northeast Qinghai-Xizang Plateau: classification and evaluation. Environ Geol 47:459–466

    Article  CAS  Google Scholar 

  • Gao QZ, Wan YF, Xu HM, Li Y, Jiangcun WZ, Borjigidai A (2010) Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat Int 226:143–150

    Article  Google Scholar 

  • Guodong H, Zhijun W (1993) Influence of grazing intensity on underground biomass and carbohydrates of the Stipa breviflora desert steppe Inner Mongolia. Arch Zootec 42:333–337

    Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Article  CAS  PubMed  Google Scholar 

  • Hirota M, Tang Y, Hu Q, Kato T, Hirata S, Mo W, Cao G, Mariko S (2005) The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai-Tibetan Plateau. Atmos Environ 39:5255–5259

    Article  CAS  Google Scholar 

  • Hopkins FM, Torn MS, Trumbore SE (2012) Warming accelerates decomposition of decades-old carbon in forest soils. Proc Natl Acad Sci 109:E1753–E1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X (2001) The vegetation Atlas of China (1: 1000000). Science Press, Beijing

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Jenkinson D, Adams D, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    Article  CAS  Google Scholar 

  • Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184

    Article  Google Scholar 

  • Lal R (2004) Offsetting China’s CO2 emissions by soil carbon sequestration. Clim Change 65:263–275

    Article  CAS  Google Scholar 

  • Lal R, Bruce J (1999) The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environ Sci Policy 2:177–185

    Article  CAS  Google Scholar 

  • Liu W, Wang X, Zhou L, Zhou H (2003) Studies on destruction, prevention and control of Plateau Pikas in Kobresia pygmaea Meadow. Acta Theriol Sin 23:214–219

    Google Scholar 

  • Liu Y, Zha Y, Gao J, Ni S (2004) Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM and in situ reflectance spectra data. Int J Remote Sens 25:4177–4189

    Article  Google Scholar 

  • Liu J, Xu X, Shao Q (2008) Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. J Geogr Sci 18:259–273

    Article  Google Scholar 

  • Liu S, Lin L, Du Y, Li Y, Zhang F, Guo X, Ouyang J, Cao G (2014) The variation of soil inorganic carbon of alpine meadow at different degeneration stages in Qinghai Province. Chin J Ecol 33:1290–1296

    Google Scholar 

  • Martinsen V, Mulder J, Austrheim G, Mysterud A (2011) Carbon storage in low-alpine grassland soils: effects of different grazing intensities of sheep. Eur J Soil Sci 62:822–833

    Article  CAS  Google Scholar 

  • Mi N, Wang S, Liu J, Yu G, Zhang W, Jobbagy E (2008) Soil inorganic carbon storage pattern in China. Global Change Biol 14:2380–2387

    Article  Google Scholar 

  • Müller-Nedebock D, Chivenge P, Chaplot V (2016) Selective organic carbon losses from soils by sheet erosion and main controls. Earth Surf Proc Land. doi:10.1002/esp.3916

    Google Scholar 

  • Ni J (2002) Carbon storage in grasslands of China. J Arid Environ 50:205–218

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Powlson D, Whitmore A, Goulding K (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55

    Article  CAS  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Sarkhot DV, Grunwald S, Ge Y, Morgan CLS (2012) Total and available soil carbon fractions under the perennial grass Cynodon dactylon (L.) Pers and the bioenergy crop Arundo donax L. Biomass Bioenergy 41:122–130

    Article  CAS  Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  CAS  Google Scholar 

  • Sherrod L, Dunn G, Peterson G, Kolberg R (2002) Inorganic carbon analysis by modified pressure-calcimeter method. Soil Sci Soc Am J 66:299–305

    Article  CAS  Google Scholar 

  • Shi Y, Baumann F, Ma Y, Song C, Kühn P, Scholten T, He J (2012) Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications. Biogeosciences 9:2287–2299

    Article  CAS  Google Scholar 

  • Smith P, Fang C (2010) Carbon cycle: a warm response by soils. Nature 464:499–500

    Article  CAS  PubMed  Google Scholar 

  • Soil Survey Staff (2011) Soil survey laboratory information manual. In: Burt R (ed) Soil survey investigations report No. 45, Version 2.0. US Department of Agriculture, Natural Resources Conservation Service, pp 249–251

  • Steffens M, Kölbl A, Kai UT, Kögel-Knabner I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma 143:63–72

    Article  CAS  Google Scholar 

  • Trumbore SE, Czimczik CI (2008) An uncertain future for soil carbon. Science 321:1455–1456

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Y, Ye X, Chu Y, Wang X (2010) Profile storage of organic/inorganic carbon in soil: from forest to desert. Sci Total Environ 408:1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Guo Z, Gao Q, Peng C (2009) Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China. Agric Ecosyst Environ 129:413–421

    Article  CAS  Google Scholar 

  • Yang Y, Mohammat A, Feng J, Zhou R, Fang J (2007) Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry 84:131–141

    Article  Google Scholar 

  • Yang Y, Fang J, Tang Y, Ji C, Zheng C, He J, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob change biol 14:1592–1599

    Article  Google Scholar 

  • Yang Y, Fang J, Ma W, Smith P, Mohammat A, Wang S, Wang W (2010) Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biol 16:3036–3047

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41030105) and the “Strategic Priority Research Program—Climate Change: Carbon Budget, Related Issues” of the Chinese Academy of Sciences (XDA05050404). The data in this study were provided by the Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences. Data were also obtained from a study of long-term changes in climate change and ecosystems in East Asia funded by the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangmin Cao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Tang, Y., Zhang, F. et al. Changes of soil organic and inorganic carbon in relation to grassland degradation in Northern Tibet. Ecol Res 32, 395–404 (2017). https://doi.org/10.1007/s11284-017-1447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-017-1447-2

Keywords

Navigation