Adam, M., van Bussel, L. G. J., Leffelaar, P. A., van Keulen, H., & Ewert, F. (2011). Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions. Ecological Modelling, 222, 131–143.
Google Scholar
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., et al. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9), 827–832.
CAS
Google Scholar
Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., et al. (2014). How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 20(7), 2301–2320.
PubMed
Google Scholar
Battisti, R., Sentelhas, P. C., & Boote, K. J. (2017). Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crop Research, 200, 28–37.
Google Scholar
Bell, M. A., & Fischer, R. A. (1994). Using yield prediction models to assess yield gains: A case study for wheat. Field Crop Research, 36, 161–166.
Google Scholar
BMLFUW. (2017). Richtlinie für die sachgerechte Düngung im Ackerbau und Grünland Bundesministerium für Land- und Forstwirtschaft. Vienna: Umwelt und Wasserwirtschaft.
Google Scholar
Chenu, K., van Oosterom, E. J., McLean, G., Deifel, K. S., Fletcher, A., Geetika, G., et al. (2018). Integrating modelling and phenotyping approaches to identify and screen complex traits: Transpiration efficiency in cereals. Journal of Experimental Botany, 69(13), 3181–3194.
CAS
PubMed
Google Scholar
Confalonieri, R., Bregaglio, S., & Acutis, M. (2016). Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration. Ecological Modelling, 328, 72–77.
Google Scholar
Dalgliesh, N. P., & Foale, M. A. (1998). Soil matters: Monitoring soil water and nitrogen in dryland farming agricultural production systems research unit (p. 122). Toowoomba: CSIRO.
Google Scholar
Dalla Marta, A., Eitzinger, J., Kersebaum, K. C., Todorovic, M., & Altobelli, F. (2018). Assessment and monitoring of crop water use and productivity in response to climate change. Journal of Agricultural Science, 156(5), 575–576.
Google Scholar
Devkota, K. P., Manschadi, A. M., Devkota, M., Lamers, J. P. A., Ruzibaev, E., Egamberdiev, O., et al. (2013). Simulating the impact of climate change on rice phenology and grain yield in irrigated drylands of Central Asia. Journal of Applied Meteorology and Climatology, 52, 2033–2050.
Google Scholar
Ebrahimi, E., Manschadi, A. M., Neugschwandtner, R. W., Eitzinger, J., Thaler, S., & Kaul, H.-P. (2016). Assessing the impact of climate change on crop management in winter wheat: A case study for Eastern Austria. Journal of Agricultural Science, 154(7), 1153–1170.
Google Scholar
Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., et al. (2013b). Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. Journal of Agricultural Science, 151, 813–835.
Google Scholar
Eitzinger, J., Trnka, M., Semerádo, D., Thaler, S., Svobodová, E., Hlavinka, P., et al. (2013a). Regional climate change impacts on 33 agricultural crop production in Central and Eastern Europe: Hotspots, regional differences and 34 common trends. Journal of Agricultural Science, 151(6), 787–812.
Google Scholar
Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., et al. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling & Software, 72, 287–303.
Google Scholar
Ghanem, M. E., Marrou, H., Biradar, C., & Sinclair, T. R. (2015). Production potential of lentil (Lens culinaris Medik.) in East Africa. Agricultural Systems, 137, 24–38.
Google Scholar
Gobin, A., Kersebaum, K. C., Eitzinger, J., Trnka, M., Hlavinka, P., Takac, J., et al. (2017). Variability in the water footprint of arable crop production across European Regions. Water, 9(2), 1–22.
Google Scholar
Goudriaan, J. (1996). Predicting crop yields under global change. In B. H. Walker & W. Steffen (Eds.), Global change and terrestrial ecosystems. Cambridge: Cambridge University Press.
Google Scholar
Grassini, P., van Bussel, L. G. J., van Warta, J., Wolf, J., Claessens, L., Yanga, H., et al. (2015). How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research, 177, 49–63.
Google Scholar
Hammer, G., Messina, C., Wu, A., & Cooper, M. (2019). Biological reality and parsimony in crop models—why we need both in crop improvement! In Silico Plants. https://doi.org/10.1093/insilicoplants/diz010.
Article
Google Scholar
Hammer, G. L., van Oosterom, E., McLean, G., Chapman, S. C., Broad, I., Harland, P., et al. (2010). Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61(8), 2185–2202.
CAS
PubMed
Google Scholar
He, D., Wang, E., Wang, J., & Robertson, M. J. (2017). Data requirement for effective calibration of process-based crop models. Agricultural and Forest Meteorology, 234–235, 136–148.
Google Scholar
Hochman, Z., Rees, H., Carberry, P. S., Hunt, J. R., McCown, R. L., Gartmann, A., et al. (2009). Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet® helps farmers monitor and manage crops in a variable climate. Crop & Pasture Science, 60, 1057–1070.
Google Scholar
Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., et al. (2014). APSIM: Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327–350.
Google Scholar
Huth, N. I., Thorburn, P. J., Radford, B. J., & Thornton, C. M. (2010). Impacts of fertilisers and legumes on N2O and CO2 emissions from soils in subtropical agricultural systems: A simulation study. Agriculture, Ecosystems & Environment, 136(3–4), 351–357.
CAS
Google Scholar
Kiniry, J. R. (1991). Maize phasic development. In J. Hanks & J. T. Ritchie (Eds.), Modeling plant and soil systems (Chapter 4) (pp. 55–70). Madison: American Society of Agronomy.
Google Scholar
Knutti, R., & Sedlácek, J. (2013). Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3, 369–373.
Google Scholar
Lobell, D. B., Hammer, G. L., Chenu, K., Zheng, B., McLean, G., & Chapman, S. C. (2015). The shifting influence of drought and heat stress for crops in Northeast Australia. Global Change Biology, 21, 4115–4127.
PubMed
Google Scholar
Manschadi, A. M., Christopher, J., deVoil, P., & Hammer, G. L. (2006). The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 33, 823–837.
CAS
PubMed
Google Scholar
Manschadi, A. M., Kaul, H.-K., Vollmann, J., Eitzinger, J., & Wenzel, W. (2014). Developing phosphorus-efficient crop varieties—An interdisciplinary research framework. Field Crops Research, 162, 87–98.
Google Scholar
Meier, U. (2001). Growth stages of mono- and dicotyledonous plants: BBCH Monograph (2nd ed.). Bonn: Federal Biological Research Centre for Agriculture and Forestry.
Google Scholar
Messina, C. D., Sinclair, T. R., Hammer, G. L., Curan, D., Thompson, J., Oler, Z., et al. (2015). Limited-transpiration trait may increase maize drought tolerance in the US Corn Belt. Agronomy Journal, 107(6), 1978–1986.
CAS
Google Scholar
Moeller, C., Pala, M., Manschadi, A. M., Meinke, H., & Sauerborn, J. (2007). Assessing the sustainability of wheat-based cropping systems using APSIM: Model parameterisation and evaluation. Australian Journal of Agricultural Research, 58, 75–86.
Google Scholar
Moeller, C., Sauerborn, J., de Voil, P., Manschadi, A. M., Pala, M., & Meinke, H. (2013). Assessing the sustainability of wheat-based cropping systems using simulation modelling: Sustainability = 42? Sustainability Science, 9(1), 1–16.
Google Scholar
Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Mirschel, W., Moriondo, M., et al. (2011). Simulation of winter wheat yields and yield variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 35, 103–114.
Google Scholar
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Muller, C., Arneth, A., et al. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111, 3268–3273.
CAS
PubMed
Google Scholar
Rötter, R. P., Carter, T. R., Olesen, J. E., & Porter, J. R. (2011). Crop–climate models need an overhaul. Nature Climate Change, 1, 175–177.
Google Scholar
Rötter, R. P., Palosuo, T., Kersebaum, K. C., Angulo, C., Bindi, M., Ewert, F., et al. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 133, 23–36.
Google Scholar
Salo, T., Palosuo, T., Kersebaum, K., Nendel, C., Angulo, C., Ewert, F., et al. (2016). Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. The Journal of Agricultural Science, 154(7), 1218–1240.
Google Scholar
SAS-Institute. (2008). SAS 92 Copyright 2002–2008. Cary: SAS Institute Inc.
Google Scholar
Seidel, S. J., Palosuo, T., Thorburn, P., & Wallach, D. (2018). Towards improved calibration of crop models: Where are we now and where should we go? European Journal of Agronomy, 94, 25–35.
Google Scholar
Sinclair, T. R. (1986). Water and nitrogen limitations in soybean grain production I. Model development. Field Crops Research, 15(2), 125–141.
Google Scholar
Sinclair, T. R., & Muchow, R. C. (1995). Effect of nitrogen supply on maize yield: I. Modeling physiological responses. Agronomy Journal, 87(4), 632–641.
Google Scholar
Sinclair, T. L., & Seligman, G. (1996). Crop modeling: From infancy to maturity. Agronomy Journal, 88(5), 698–704.
Google Scholar
Sinclair, T. R., & Seligman, N. (2000). Criteria for publishing papers on crop modeling. Field Crops Research, 68, 165–172.
Google Scholar
Sinclair, T. R., Soltani, A., Marrou, H., Ghanem, M., & Vadez, V. (2020). Geospatial assessment for crop genetic and management improvements. Crop Science. https://doi.org/10.1002/csc2.20106.
Article
Google Scholar
Soltani, A., Maddah, V., & Sinclair, T. R. (2013). SSM-Wheat: A simulation model for wheat development, growth and yield. International Journal of Plant Production, 7(4), 711–740.
Google Scholar
Soltani, A., & Sinclair, T. R. (2012). Modeling physiology of crop development, growth and yield. Wallingford: CABI.
Google Scholar
Soltani, A., & Sinclair, T. R. (2015). A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crops Research, 175, 37–46.
Google Scholar
Soufizadeh, S., Munaro, E., McLean, G., Massigna, E., van Oosterom, E. J., Chapman, S. C., et al. (2018). Modelling the nitrogen dynamics of maize crops: Enhancing the APSIM maize model. European Journal of Agronomy, 100, 118–131.
CAS
Google Scholar
StClair, S. B., & Lynch, J. P. (2010). The opening of Pandora’s Box: Climate change impacts on soil fertility and crop nutrition in developing countries. Plant and Soil, 335, 101–115.
CAS
Google Scholar
Tang, J., Wang, J., Fang, Q., Wang, E., Yin, H., & Pan, X. (2018). Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 98, 82–94.
Google Scholar
Tenorio, F. A. M., Eagle, A. J., McLellan, E. L., Cassman, K. G., Howard, R., Below, F. E., et al. (2019). Assessing variation in maize grain nitrogen concentration and its implications for estimating nitrogen balance in the US North Central region. Field Crops Research, 240, 185–193.
Google Scholar
Thaler, S., Eitzinger, J., Trnka, M., & Dubrovsky, M. (2012). Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. Journal of Agricultural Science, 150(05), 537–555.
CAS
Google Scholar
Van der Velde, M., & Nisini, L. (2018). Performance of the MARS-crop yield forecasting system for the European Union: Assessing accuracy, in-season, and year-to-year improvements from 1993 to 2015. Agricultural Systems, 168, 224–230.
Google Scholar
Van Ittersum, M. K., Leffelaar, P. A., van Keulen, H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop model. European Journal of Agronomy, 18, 201–234.
Google Scholar
van Oosterom, E. J., Borrell, A. K., Chapman, S. C., Broad, I. J., & Hammer, G. L. (2010). Functional dynamics of the nitrogen balance of sorghum: I N demand of vegetative plant parts. Field Crops Research, 115, 19–28.
Google Scholar
Wallach, D., Buis, S., Lecharpentier, P., Bourges, J., Clastre, P., Launay, M., et al. (2011). A package of parameter estimation methods and implementation for the STICS crop-soil model. Environmental Modelling & Software, 26, 386–394.
Google Scholar
White, J. W., Hoogenboom, G., Kimbal, B. A., & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124, 357–368.
Google Scholar
Wu, A., Hammer, G. L., Doherty, A., von Caemmerer, S., & Farquhar, G. D. (2019). Quantifying impacts of enhancing photosynthesis on crop yield. Nature Plants, 5, 380–388.
PubMed
Google Scholar
Zhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., et al. (2019). A SIMPLE crop model. European Journal of Agronomy, 104, 97–106.
Google Scholar