Skip to main content
Log in

Dual Horizon Peridynamic Approach for Studying the Effect of Porous Media on the Dynamic Crack Growth in Brittle Materials

  • Research
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

This study aims to investigate the effect of the stop-hole configurations on dynamic cracks using the dual-horizon peridynamic approach (DHPD). The traditional PD formulations require uniform discretization for the solution domain. Therefore, to investigate the effect of the stop holes with traditional PD, more densely spaced points are used to represent the holes. If less densely spaced points are used in traditional PD, this may lead to unexpected crack initiations around the stop holes due to stress concentrations originating from the stair-step-like shapes. If non-uniform point spacing is used for representing the outer edge of the stop hole accurately in traditional PD, a ghost force problem may occur and the forces of the points in the bond may not interact in pairs. Moreover, the use of fine mesh causes high computational efforts. Therefore, the DHPD, which allows non-uniform point spacings unlike traditional PD, is employed for examining the characteristics of dynamic crack propagation in the presence of stop holes. Before stop-hole configurations are examined, the developed DHPD code is validated with the results of a reference solution belonging to the Kalthoff-Winkler test. After the validation process for the DHPD code is successfully completed, the crack paths in the stop hole configurations obtained by DHPD are compared with the experiments, and a good agreement between the test and PD simulation is achieved. Furthermore, the performances of the stop hole configurations are investigated by DHPD in terms of toughening effect on the brittle material. Besides, the effect of crack branching on dynamic crack retardation is also examined. The results of dynamic crack propagation simulated by DHPD are compared with the experimental observations and reference results. The results of DHPD are observed to be a good agreement with the experimental observations available in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No any datasets used.

References

  1. Shin CS, Cai CQ (2000) A model for evaluating the effect of fatigue crack repair by the infiltration method. Fatigue Fract Eng Mater Struct 23:835–845. https://doi.org/10.1046/j.1460-2695.2000.00347.x

    Article  Google Scholar 

  2. Baker A (1999) Bonded composite repair of fatigue-cracked primary aircraft structure. Compos Struct 47:431–443. https://doi.org/10.1016/S0263-8223(00)00011-8

    Article  Google Scholar 

  3. Mendez PF, Eagar TW (2003) Penetration and defect formation in high current arc welding. MIT (US). https://doi.org/10.2172/835707

  4. Uz M-V, Koçak M, Lemaitre F, Ehrström J-C, Kempa S, Bron F (2009) Improvement of damage tolerance of laser beam welded stiffened panels for airframes via local engineering. Int J Fatigue 31:916–926. https://doi.org/10.1016/j.ijfatigue.2008.10.003

    Article  Google Scholar 

  5. Carlson RL, Kardomateas GA, Bates PR (1991) The effects of overloads in fatigue crack growth. Int J Fatigue 13:453–460. https://doi.org/10.1016/0142-1123(91)90479-I

    Article  Google Scholar 

  6. Song PS, Sheu GL (2002) Retardation of fatigue crack propagation by indentation technique. Int J Press Vessels Pip 79:725–733. https://doi.org/10.1016/S0308-0161(02)00096-0

    Article  Google Scholar 

  7. Yang J-M, Her YC, Han N, Clauer A (2001) Laser shock peening on fatigue behavior of 2024–T3 Al alloy with fastener holes and stopholes. Mater Sci Eng A 298:296–299. https://doi.org/10.1016/S0921-5093(00)01277-6

    Article  Google Scholar 

  8. Wang S, Li Y, Yao M, Wang R (1998) Compressive residual stress introduced by shot peening. J Mater Process Technol 73:64–73. https://doi.org/10.1016/S0924-0136(97)00213-6

    Article  Google Scholar 

  9. Ray PK, Verma BB, Mohanthy PK (2002) Spot heating induced fatigue crack growth retardation. Int J Press Vessels Pip 79:373–376. https://doi.org/10.1016/S0308-0161(02)00019-4

    Article  Google Scholar 

  10. Ayatollahi MR, Razavi N, Yahya MY (2015) Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique. Eng Fract Mech 145:115–127. https://doi.org/10.1016/j.engfracmech.2015.03.027

    Article  Google Scholar 

  11. Broek D (1982) Elementary engineering fracture mechanics. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-009-4333-9

    Book  Google Scholar 

  12. Miyagawa H, Nishitani H (1985) Retardation of fatigue crack propagation due to additional holes or indentations in plate specimens. Bulletin of JSME 28:2219–2223. https://doi.org/10.1299/jsme1958.28.2219

    Article  Google Scholar 

  13. Carlsson J, Isaksson P (2019) Crack dynamics and crack tip shielding in a material containing pores analysed by a phase field method. Eng Fract Mech 206:526–540. https://doi.org/10.1016/j.engfracmech.2018.11.013

    Article  Google Scholar 

  14. Needleman A (2014) Some issues in cohesive surface modeling. Procedia IUTAM 10:221–246. https://doi.org/10.1016/j.piutam.2014.01.020

    Article  Google Scholar 

  15. Russo R, Chen B (2020) Overcoming the cohesive zone limit in composites delamination: modeling with slender structural elements and higher-order adaptive integration. Int J Numer Meth Eng 121:5511–5545

    Article  MathSciNet  Google Scholar 

  16. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46:131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c131::AID-NME726%3e3.0.CO;2-J

    Article  MathSciNet  Google Scholar 

  17. Wen LF, Tian R, Wang LX, Feng C (2023) Improved XFEM for multiple crack analysis: accurate and efficient implementations for stress intensity factors. Comput Methods Appl Mech Eng 411:116045. https://doi.org/10.1016/j.cma.2023.116045

    Article  MathSciNet  Google Scholar 

  18. Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118. https://doi.org/10.1016/j.cma.2014.01.016

    Article  MathSciNet  Google Scholar 

  19. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209. https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  MathSciNet  Google Scholar 

  20. Chen Z, Niazi S, Bobaru F (2019) A peridynamic model for brittle damage and fracture in porous materials. Int J Rock Mech Min Sci 122:104059. https://doi.org/10.1016/j.ijrmms.2019.104059

    Article  Google Scholar 

  21. Oterkus S, Madenci E, Oterkus E (2021) Application of peridynamics for rock mechanics and porous media. In: Oterkus E, Oterkus S, Madenci E, editors. Peridynamic Modeling, Numerical Techniques, and Applications, Elsevier. p. 387–401. https://doi.org/10.1016/B978-0-12-820069-8.00010-X

  22. Rahimi MN, Kefal A, Yildiz M, Oterkus E (2020) An ordinary state-based peridynamic model for toughness enhancement of brittle materials through drilling stop-holes. Int J Mech Sci 182:105773. https://doi.org/10.1016/j.ijmecsci.2020.105773

    Article  Google Scholar 

  23. Ozdemir M, Imachi M, Tanaka S, Oterkus S, Oterkus E (2022) A comprehensive investigation on macro–micro crack interactions in functionally graded materials using ordinary-state based peridynamics. Compos Struct 287:115299. https://doi.org/10.1016/j.compstruct.2022.115299

    Article  Google Scholar 

  24. Shen S, Yang Z, Han F, Cui J, Zhang J (2021) Peridynamic modeling with energy-based surface correction for fracture simulation of random porous materials. Theoret Appl Fract Mech 114:102987. https://doi.org/10.1016/j.tafmec.2021.102987

    Article  Google Scholar 

  25. Basoglu MF, Kefal A, Zerin Z, Oterkus E (2022) Peridynamic modeling of toughening enhancement in unidirectional fiber-reinforced composites with micro-cracks. Compos Struct 297:115950. https://doi.org/10.1016/j.compstruct.2022.115950

    Article  Google Scholar 

  26. Ni T, Pesavento F, Zaccariotto M, Galvanetto U, Zhu Q-Z, Schrefler BA (2020) Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media. Comput Methods Appl Mech Eng 366:113101. https://doi.org/10.1016/j.cma.2020.113101

    Article  MathSciNet  Google Scholar 

  27. Gu X, Li X, Xia X, Madenci E, Zhang Q (2023) A robust peridynamic computational framework for predicting mechanical properties of porous quasi-brittle materials. Compos Struct 303:116245. https://doi.org/10.1016/j.compstruct.2022.116245

    Article  Google Scholar 

  28. Karpenko O, Oterkus S, Oterkus E (2020) Influence of Different Types of Small-Size Defects on Propagation of Macro-cracks in Brittle Materials. J Peridyn Nonlocal Model 2:289–316. https://doi.org/10.1007/s42102-020-00032-z

    Article  MathSciNet  Google Scholar 

  29. Dorduncu M, Olmus I, Rabczuk T (2022) A peridynamic approach for modeling of two dimensional functionally graded plates. Compos Struct 279:114743. https://doi.org/10.1016/j.compstruct.2021.114743

    Article  Google Scholar 

  30. Madenci E, Dorduncu M, Phan N, Gu X (2019) Weak form of bond-associated non-ordinary state-based peridynamics free of zero energy modes with uniform or non-uniform discretization. Eng Fract Mech 218. https://doi.org/10.1016/j.engfracmech.2019.106613

  31. Hu Y, Chen H, Spencer BW, Madenci E (2018) Thermomechanical peridynamic analysis with irregular non-uniform domain discretization. Eng Fract Mech 197:92–113. https://doi.org/10.1016/j.engfracmech.2018.02.006

    Article  Google Scholar 

  32. Bobaru F, Ha YD (2011) Adaptive refinement and multiscale modeling in 2D peridynamics. JMC 9. https://doi.org/10.1615/IntJMultCompEng.2011002793

  33. Dipasquale D, Sarego G, Zaccariotto M, Galvanetto U (2016) Dependence of crack paths on the orientation of regular 2D peridynamic grids. Eng Fract Mech 160:248–263. https://doi.org/10.1016/j.engfracmech.2016.03.022

    Article  Google Scholar 

  34. Dorduncu M, Madenci E (2023) Finite element implementation of ordinary state-based peridynamics with variable horizon. Engineering with Computers 39:641–654. https://doi.org/10.1007/s00366-022-01641-6

    Article  Google Scholar 

  35. Madenci E, Dorduncu M, Barut A, Phan N (2018) A state-based peridynamic analysis in a finite element framework. Eng Fract Mech 195:104–128. https://doi.org/10.1016/j.engfracmech.2018.03.033

    Article  Google Scholar 

  36. Madenci E, Dorduncu M, Barut A, Phan N (2018) Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput Methods Appl Mech Eng 337:598–631. https://doi.org/10.1016/j.cma.2018.03.038

    Article  MathSciNet  Google Scholar 

  37. Madenci E, Barut A, Dorduncu M (2019) Peridynamic differential operator for numerical analysis. Springer International Publishing. https://doi.org/10.1007/978-3-030-02647-9

  38. Madenci E, Dorduncu M, Barut A, Futch M (2017) Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator. Numerical Methods for Partial Differential Equations 33:1726–1753. https://doi.org/10.1002/num.22167

    Article  MathSciNet  Google Scholar 

  39. Dorduncu M (2021) Peridynamic modeling of delaminations in laminated composite beams using refined zigzag theory. Theoret Appl Fract Mech 112:102832–102832. https://doi.org/10.1016/j.tafmec.2020.102832

    Article  Google Scholar 

  40. Madenci E, Dorduncu M, Gu X (2019) Peridynamic least squares minimization. Comput Methods Appl Mech Eng 348:846–874. https://doi.org/10.1016/j.cma.2019.01.032

    Article  MathSciNet  Google Scholar 

  41. Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Meth Eng 108:1451–1476. https://doi.org/10.1002/nme.5257

    Article  MathSciNet  Google Scholar 

  42. Wang B, Oterkus S, Oterkus E (2023) Derivation of dual-horizon state-based peridynamics formulation based on Euler-Lagrange equation. Continuum Mech Thermodyn 35:841–861. https://doi.org/10.1007/s00161-020-00915-y

    Article  MathSciNet  Google Scholar 

  43. Anicode SVK, Madenci E (2023) Direct coupling of dual-horizon peridynamics with finite elements for irregular discretization without an overlap zone. Engineering with Computers. https://doi.org/10.1007/s00366-023-01800-3

    Article  Google Scholar 

  44. Altay U, Dorduncu M, Kadioglu S (2023) Investigation of stop hole effect on the dynamic crack propagation by using dual horizon peridynamic approach. 23rd National Congress of Mechanics, Turkey 

  45. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535. https://doi.org/10.1016/j.compstruc.2004.11.026

    Article  Google Scholar 

  46. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. New York: Springer-Verlag. https://doi.org/10.1007/978-1-4614-8465-3

  47. Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press

  48. Nguyen CT, Oterkus S, Oterkus E (2021) An energy-based peridynamic model for fatigue cracking. Eng Fract Mech 241:107373. https://doi.org/10.1016/j.engfracmech.2020.107373

    Article  Google Scholar 

  49. Broberg KB (1989) The near-tip field at high crack velocities. Structural Integrity, New York: Springer p. 1–13

  50. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434. https://doi.org/10.1016/0022-5096(94)90003-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ugur Altay: conceptualization, methodology, software, formal analysis, validation, visualization, writing — review and editing. Mehmet Dorduncu: conceptualization, methodology, investigation, writing — review and editing, supervision. Suat Kadioglu: conceptualization, methodology, investigation, writing — review and editing, supervision.

Corresponding author

Correspondence to Mehmet Dorduncu.

Ethics declarations

Ethics Approval

This declaration is not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altay, U., Dorduncu, M. & Kadioglu, S. Dual Horizon Peridynamic Approach for Studying the Effect of Porous Media on the Dynamic Crack Growth in Brittle Materials. J Peridyn Nonlocal Model (2024). https://doi.org/10.1007/s42102-023-00115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42102-023-00115-7

Keywords

Navigation